Submodular set function: Difference between revisions

Content deleted Content added
removed empty sections and unnecessary spaces
Line 9:
 
A nonnegative submodular function is also a [[subadditive]] function, but a subadditive function need not be submodular.
 
==Applications==
 
==Types==
Line 41 ⟶ 39:
# Directed graph cuts
#:Let <math>\Omega=\{v_1,v_2,\dots,v_n\}</math> be the vertices of a [[directed graph]]. For any set of vertices <math>S\subseteq \Omega</math> let <math>f(S)</math> denote the number of edges <math>e=(u,v)</math> such that <math>u\in S</math> and <math>v\in \Omega-S</math>.
 
 
==Continuous extensions==
Line 76 ⟶ 73:
* [[Matroid]]
{{Div col end}}
 
 
 
==Citations==
Line 91 ⟶ 86:
 
==References==
 
===General References===
*{{Citation|last=Schrijver|first=Alexander|authorlink=Alexander Schrijver|year=2003|title=Combinatorial Optimization|___location=|publisher=[[Springer Publishing|Springer]]|isbn=3-540-44389-4}}
*{{Citation|last=Lee|first=Jon|authorlink=Jon Lee (mathematician)|year= 2004 |title=A First Course in Combinatorial Optimization |___location=|publisher=[[Cambridge University Press]]|isbn= 0-521-01012-8}}
*{{Citation|last=Fujishige|first=Satoru|year=2005|title=Submodular Functions and Optimization|___location=|publisher=[[Elsevier]]|isbn=0-444-52086-4}}
*{{Citation|last=Narayanan|first=H.|year= 1997 |title=Submodular Functions and Electrical Networks|___location=|publisher=|isbn= 0-444-82523-1}}
 
==External links==
 
 
<!--- Categories --->