Linear elasticity: Difference between revisions

Content deleted Content added
Isotropic media - use Einstein notation
Line 49:
and <math>c=\omega/\sqrt{\mathbf{k}\cdot\mathbf{k}}</math> is phase velocity.
== Isotropic media ==
In [[Hooke's Law#Isotropic materials|isotropic]] media, the [[elasticity tensor]] has the form
:<math> C_{ijkl}
= \kappa \, \delta_{ij}\, \delta_{kl}
Line 56:
<math>\kappa</math> is [[Bulk modulus|incompressibility]], and
<math>\mu</math> is [[Shear modulus|rigidity]].
Hence theThe acoustic algebraic operator becomes :
:<math>A[\hat{\mathbf{k}}]=
\alpha^2 \,\hat{\mathbf{k}}\otimes\hat{\mathbf{k}}
+\beta^2 \, (k^2\mathbf{I}-\hat{\mathbf{k}}\otimes\hat{\mathbf{k}} )
</math>
where
<math> \otimes </math> denotes the [[tensor product]],
<math> \mathbf{I} </math> is the identity matrix, and
:<math> \alpha^2=(\kappa+\frac{4}{3}\mu)/\rho
\qquad \beta^2=\mu/\rho </math>
are the eigenvalues of
<math>A[\hat{\mathbf{k}}]</math>
with eigenvectors <math>\hat{\mathbf{u}}</math> parallel and orthogonal to the propagation direction <math>\hat{\mathbf{k}}</math>, respectively. In index notation:
 
:<math>A_{ij}[\nabla]=\alpha^2 k_ik_j\partial_i\partial_j+\beta^2(k_mk_m\partial_m\partial_m\delta_{ij}-k_ik_j\partial_i\partial_j)\,</math>
 
and the acoustic algebraic operator becomes
 
:<math>A_{ij}[\mathbf{k}]=\alpha^2 k_ik_j+\beta^2(k_mk_m\delta_{ij}-k_ik_j)\,</math>
 
where
 
:<math> \alpha^2=\left(\kappa+\frac{4}{3}\mu\right)/\rho \qquad \beta^2=\mu/\rho </math>
In the seismological literature, the corresponding plane waves are called P-waves and S-waves (see [[Seismic wave]]).
are the [[eigenvalue]]s of <math>A[\hat{\mathbf{k}}]</math> with eigenvectors[[eigenvector]]s <math>\hat{\mathbf{u}}</math> parallel and orthogonal to the propagation direction <math>\hat{\mathbf{k}}</math>, respectively. In indexthe notation:seismological literature, the corresponding plane waves are called P-waves and S-waves (see [[Seismic wave]]).
 
== References ==