Content deleted Content added
Isotropic media - use Einstein notation |
|||
Line 49:
and <math>c=\omega/\sqrt{\mathbf{k}\cdot\mathbf{k}}</math> is phase velocity.
== Isotropic media ==
In [[Hooke's Law#Isotropic materials|isotropic]] media, the [[elasticity tensor]] has the form
:<math> C_{ijkl}
= \kappa \, \delta_{ij}\, \delta_{kl}
Line 56:
<math>\kappa</math> is [[Bulk modulus|incompressibility]], and
<math>\mu</math> is [[Shear modulus|rigidity]].
where ▼
:<math> \alpha^2=(\kappa+\frac{4}{3}\mu)/\rho▼
with eigenvectors <math>\hat{\mathbf{u}}</math> parallel and orthogonal to the propagation direction <math>\hat{\mathbf{k}}</math>, respectively. In index notation:▼
:<math>A_{ij}[\nabla]=\alpha^2
and the acoustic algebraic operator becomes
:<math>A_{ij}[\mathbf{k}]=\alpha^2 k_ik_j+\beta^2(k_mk_m\delta_{ij}-k_ik_j)\,</math>
▲where
▲:<math> \alpha^2=\left(\kappa+\frac{4}{3}\mu\right)/\rho \qquad \beta^2=\mu/\rho </math>
▲are the [[eigenvalue]]s of <math>A[\hat{\mathbf{k}}]</math> with
== References ==
|