Content deleted Content added
→Axioms, Eigenclasses: Axiom (1) made more specific. |
|||
Line 114:
then <i>x</i> is a <em>member-of</em> <i>y</i> and
<i>y</i> is a <em>container-of</em> <i>x</i>.
By
:(ϵ) = (<i>.ec</i>) ○ (≤)
Line 129:
Axiom (2) asserts antisymmetry of ≤ , so that inheritance is a [[partial order]].
Furthermore,
<span style="white-space:nowrap">(ϵ) ○ (≤) = (ϵ)</span>, i.e.
:<i>x</i> ≤ <i>y</i> only-if <i>a</i> ϵ <i>x</i> implies <i>a</i> ϵ <i>y</i> for every object <i>a</i> (every member of <i>x</i> is a member of <i>y</i>),
Line 316 ⟶ 317:
<ol style="list-style-type:none; margin-left: 2ex;">
<li style="text-indent:-3ex; margin-left:3ex;">(1)
Containers of an object <i>x</i> are exactly the
ancestors the eigenclass of <i>x</i>,
i.e.
:(ϵ) = (<i>.ec</i>) ○ (≤) for a unique map <i>.ec</i>.
<li>(2)
|