Content deleted Content added
m r2.7.1) (Robot: Adding ca:Funció simètrica |
→Examples: Copyedit, formatting |
||
Line 13:
== Examples ==
* Consider the
::<math>f(x_1,x_2,x_3)=(x-x_1)(x-x_2)(x-x_3)</math>▼
▲<math>f(x_1,x_2,x_3)=(x-x_1)(x-x_2)(x-x_3)</math>
::<math>f(x_1,x_2,...,x_n)=f(x_2,x_1,...,x_n)=f(x_3,x_1,...,x_n,x_{n-1})</math> etc. ▼
:In general, the function remains the same for every [[permutation]] of its variables. This means that, in this case
▲By definition, a symmetric function with n variables has the property that
::<math> (x-x_1)(x-x_2)(x-x_3)=(x-x_2)(x-x_1)(x-x_3)=(x-x_3)(x-x_1)(x-x_2)
:and so on, for all permutations of <math>x_1,x_2,x_3</math>
▲<math>f(x_1,x_2,...,x_n)=f(x_2,x_1,...,x_n)=f(x_3,x_1,...,x_n,x_{n-1})</math> etc.
::<math>f(x,y)=x^2+y^2-r^2</math>▼
▲In general, the function remains the same for every [[permutation]] of its variables. This means that, in this case:
::<math>f(y,x)=y^2+x^2-r^2</math>▼
:which yields gives exactly the same results as the original ''f''(''x'',''y'').
▲<math> (x-x_1)(x-x_2)(x-x_3)=(x-x_2)(x-x_1)(x-x_3)=(x-x_3)(x-x_1)(x-x_2)</math>, and so on, for all permutations of <math>x_1,x_2,x_3</math>
▲* Consider the circle function:
:This function is obviously not the same as the original if {{nowrap|1=''a'' ≠ ''b''}}, which makes it non-symmetric.
▲<math>f(x,y)=x^2+y^2-r^2</math>
▲If the x,y variables are interchanged the function becomes
▲<math>f(y,x)=y^2+x^2-r^2</math>
▲* Consider now the ellipse equation:
▲<math>f(x,y)=(\frac{x}{a})^2+(\frac{y}{b})^2-r^2</math>
▲If x and y are interchanged, the function becomes
▲<math>f(y,x)=(\frac{y}{a})^2+(\frac{x}{b})^2-r^2</math>
== Applications ==
|