Gap dynamics: Difference between revisions

Content deleted Content added
This content was originally posted at Talk:Disturbance (ecology) by {{user|Katiedrum}}
 
No edit summary
Line 1:
[[File:Small Forest Gap.JPG|thumb| Tree fall gaps in the Amazon give way to sunlight.]]
'''Gap dynamics''' refers to the pattern of plant growth that occurs following the creation of a forest gap, a local area of natural disturbance that results in an opening in the canopy of a forest. Gap dynamics are a typical characteristic of both temperate and tropical forests and have a wide variety of causes and effects on forest life.
 
Gaps are the result of natural disturbances in forests, ranging from a large branch breaking off and dropping from a tree, to a tree dying then falling over, bringing its roots to the surface of the ground, to landslides bringing down large groups of trees. Because of the range of causes, gaps therefore have a wide range of sizes, including small and large gaps. Regardless of size, gaps allow an increase in light as well as changes in moisture and wind, leading to differences in microclimate conditions compared to those from below the closed canopy, which are generally cooler and more shaded.
Line 20:
After a disturbance, there are several ways in which regeneration can occur. One way, termed the advance regeneration pathway, is when the primary understory already contains seedlings and saplings. This method is most common in the Neotropics when faced when small scale disturbances. The next pathway is from tree remains, or any growth from bases or roots, and is common in small disturbance gaps. The third route is referred to as the soil seed bank, and is the result of germination of seeds already found in the soil. The final regeneration pathway is the arrival of new seeds via animal dispersal or wind movement. The most critical components of the regeneration are seed distribution, germination, and survival. <ref>{{cite book|last=Kricher|first=John|title=Tropical ecology|year=2011|publisher=Princeton University Press|___location=Princeton, New Jersey|pages=188-226}}</ref>
 
==Primary Successionsuccession==
Succession is the slow rebuilding of forest gaps from natural or human disturbances. When major geological changes such as volcano eruptions or landslides occur, the current vegetation and soil may erode away leaving only rock. Primary succession occurs when pioneer species such as lichens colonize rock. As the lichens and mosses decompose, a soil substrate forms called peat. The peat, over time, will create a terrestrial ecosystem. From there on herbaceous, non-woody plants will develop and trees will follow. Major holes or gaps in the forest ecosystem will take hundreds of years to regenerate from a rock base.<ref>{{cite book|last=Brokaw|first=N.V.L.|title=The Ecology of Natural Disturbance and Patch Dynamics.|year=1985|publisher=Academic Press|___location=San Diego, California|pages=53-69}}</ref>
 
==Secondary Successionsuccession==
[[File:Cecropia.jpg|thumb|Cecropia trees taking advantage of a canopy gap]]
Secondary succession occurs where a disturbance has taken place but soil remains and is able to support plant growth. It does not take nearly as long for plant regeneration to occur because of the soil substrate already present. Secondary succession is much more common than primary succession in the tropics.
Line 31:
Secondary succession in the tropics begins with pioneer species, which are rapidly growing and include vines and shrubs. Once these species are established, large heliophilic species will develop such as heliconias. Cecropias are also a major pioneering tree in the tropics and they are adapted to grow well where forest gaps are giving way to sunlight. Shade-tolerant species that have remained low in the forest develop and become much taller. These successional phases do not have definite order or structure and because of the very high biodiversity in the tropics, there is a lot of competition for resources such as soil nutrients and sunlight.
 
==Examples of Treetree Dynamicsdynamics==
Due to the fact that horizontal and vertical heterogeneity of a forest is significantly increased by gaps, gaps become an obvious consideration in explaining high biodiversity. It has been proven that gaps create suitable conditions for rapid growth and reproduction. For example, non-shade tolerant plant species and many shade-tolerant plant species respond to gaps with an increase in growth, and at least a few species are dependent on gaps to succeed in their respected environments (Brokaw 1985; Hubbell and Foster 1986b; Murray 1988; Clark and Clark 1992). Gaps create a diverse microclimates, affecting light, moisture, and wind conditions (Brokaw 1985). A study conducted on Barro Colorado Island in Panama showed that gaps had greater seedling establishment and higher sapling densities than control areas.