Content deleted Content added
mNo edit summary |
mNo edit summary |
||
Line 19:
<!-- : P(t) = ∑iwiPibi(t) / ∑iwibi(t) -->
for anything more than a conic Bezier segment. Searching for a single form, the group worked together, learning about knots, multiple knots and how nicely Bezier segments, especially the conics, could be imbedded into a B-spline curve with multiple knots. Looking back, it seemed so simple: It is easy to verify that the equation for P(t) is valid for the B-spline basis functions as well as for Bernstein basis functions. By the end of 1980 the staff knew we had a way to present all the required curve forms using a single representation, now know as the NURBS form. But this new representation could easily have died at this point. The staff were already 12 to 18 months down a development path. They had completed a large number of algorithms using the old curve forms. They now had to convince
There are two reasons why NURBS were so quickly accepted by IGES. The first was that IGES was in great need of a way to represent objects. Up to that point there were, for example, only two surface definitions in IGES and the B-spline form was restricted to cubic splines. The other, surprisingly important, reason for the rapid acceptance was that Boeing, not being a CAD system supplier, was not a threat to any of the major turnkey system vendors. Evidently, IGES easily bogs down when different vendors support their own slightly different representations for the same objects. At this first IGES meeting, it was discovered that the people with the best understanding of the presentation were the SDRC representatives. Evidently SDRC was also active in defining a single representation for the standard CAD curves and was working on a similar definition.
So that’s how NURBS started at Boeing. Boehm’s B-spline refinement paper from CAD ’80 was of primary importance. It enabled the staff to understand non-uniform splines and to appreciate the geometrical nature of the definition so as to use B-splines in solving engineering problems. The first use of the geometrical nature of B-splines was in the curve/curve intersection. The Bezier subdivision process was utilized, and a second use was
For the record, by late 1980, the TIGER Geometry Development Group consisted of Robert Blomgren, Richard Fuhr, George Graf, Peter Kochevar, Eugene Lee, Miriam Lucian and Richard Rice. Robert Blomgren was “lead engineer”.
|