Content deleted Content added
Disambiguated: Regularization (3), Norm (2), Function, Positive definite, Matrix, Bayes using Dab solver |
Mark viking (talk | contribs) →Theoretical background: Rephrased definition of hypothesis space |
||
Line 13:
<math>f = \text{arg}\min_{f\in\mathcal{H}}\left\{\frac{1}{n}\sum_{i=1}^n V(y_i,f(x_i))+\lambda||f||^2_\mathcal{H}\right\} </math>,
where <math>\mathcal{H}</math> is a [[hypothesis space]]<ref>
When <math>\mathcal{H}</math> is a [[reproducing kernel Hilbert space]], there exists a [[kernel function]] <math>K: \mathbf X \times \mathbf X \to \mathbb R</math> that can be written as an <math>n\times n</math> [[symmetric]] [[Positive-definite kernel|positive definite]] [[matrix (mathematics)|matrix]] <math>\mathbf K</math>. By the [[representer theorem]],<ref> See {{cite journal|last=Scholkopf|first=Bernhard|coauthors=Ralf Herbrich and Alex Smola|title=A Generalized Representer Theorem|journal=Computational Learning Theory: Lecture Notes in Computer Science|year=2001|volume=2111|pages=416-426|doi=10.1007/3-540-44581-1_27|url=http://www.springerlink.com/content/v1tvba62hd4837h9/?MUD=MP}}</ref> <math>f(x_i) = \sum_{f=1}^n c_j \mathbf K_{ij}</math>, and <math> ||f||^2_{\mathcal H} = \langle f,f\rangle_\mathcal H = \sum_{i=1}^n\sum_{j=1}^n c_ic_jK(x_i,x_j) = c^T\mathbf K c </math>
|