Test functions for optimization: Difference between revisions

Content deleted Content added
No edit summary
No edit summary
Line 21:
|-
! Sphere function
| <math>f(\boldsymbol{x}) = \sum_{i=1}^{n} x_{i}^{2}.\quad</math> || <math>f(x_{1}, \dots, x_{n}) = f(0, \dots, 0) = 0</math>, for <math>-\infty \le x_{i} \le \infty</math>, <math>1 \le i \le n</math> || [[File:Sphere function in 3D.pdf|300px|thumb||Sphere function for n=3.]]
|-
! [[Rosenbrock function]]
Line 28:
n=2 & \rightarrow \quad f(1,1) = 0, \\
n=3 & \rightarrow \quad f(1,1,1) = 0, \\
n>3 & \rightarrow \quad f\left(-1,\underbrace{1,\dots,1}_{(n-1) \text{ times}}\right) = 0. \\
\end{cases}
</math> for <math>-\infty \le x_{i} \le \infty</math>, <math>1 \le i \le n</math> || [[File:Rosenbrock's function in 3D.pdf|300px|thumb||Rosenbrock's function for n=3.]]
|-
|}
 
Line 61 ⟶ 62:
</math>
 
: .
: for <math>-\infty \le x_{i} \le \infty</math>, <math>1 \le i \le n</math>.
 
* Beale's function