Implementation of mathematics in set theory: Difference between revisions

Content deleted Content added
m Ordered pair: Clarified abbreviation of 'defined' to 'def' by reinstating periods ('.'s) afterwards, giving 'def.' over equals signs
m Functions: Fixed a LaTeX expression's alignment
Line 101:
 
== Functions ==
A [[function (set theory)|functional relation]] is a [[binary predicate]] <math>F</math> such that <math>\forall x, y, z\,\left(xFy \wedge xFz \to y = z\right)</math>. Such a [[Relation (mathematics)|relation]] ([[Predicate (logic)|predicate]]) is implemented as a relation (set) exactly as described in the previous section. So the predicate <math>F</math> is implemented by the set <math>\left\{\left(x, y\right) : xFy\right\}</math>. A set of ordered pairs <math>F</math> is a function if and only if <math>\forall x, y, z\,\left(\left(x, y\right) \in F \wedge \left(x, z\right) \in F \to y = z\right)</math>. It is therefore possible to define this function <math>F\!\left(x\right)</math> as the unique object <math>y</math> such that <math>xFy</math>&thinsp;–&thinsp;i.e.: <math>x</math> is <math>F</math>-related to <math>y</math> such that the relation <math>f</math> holds between <math>x</math> and <math>y</math>&thinsp;–&thinsp;or as the unique object <math>y</math> such that <math>\left(x, y\right) \in F</math>. The presence in both theories of functional predicates which are not sets makes it useful to allow the notation <math>F\!\left(x\right)</math> both for sets <math>F</math> and for important functional predicates. As long as one does not quantify over functions in the latter sense, all such uses are in principle eliminable.
 
In [[New Foundations|NFU]], <math>x</math> has the same type as <math>F\!\left(x\right)</math>, and <math>F</math> is three types higher than <math>F\!\left(x\right)</math> (one type higher, if a type-level ordered pair is used). To solve this problem, one could define <math>F\left[A\right]</math> as <math>\left\{y : \exists x\,\left(x \in A \wedge y = F\!\left(x\right)\right)\right\}</math> for any set <math>A</math>, but this is more conveniently written as <math>\left\{F\!\left(x\right) : x \in A\right\}</math>. Then, if <math>A</math> is a set and <math>F</math> is any functional relation, the '[[axiom of replacement]]' assures that <math>F\left[A\right]</math> is a set in [[ZFC]]. In NFU, <math>F\left[A\right]</math> and <math>A</math> now have the same type, and <math>F</math> is two types higher than <math>F\left[A\right]</math> (the same type, if a type-level ordered pair is used).