Balanced polygamma function: Difference between revisions

Content deleted Content added
No edit summary
cleaned up the page
Line 1:
In mathematics, the '''generalized polygamma function''' or '''balanced negapolygamma function''' is a function introduced by Olivier Espinosa Aldunate and [[Victor Moll|Victor H. Moll]].<ref>[http://www.math.tulane.edu/~vhm/papers_html/genoff.pdf Olivier Espinosa Victor H. Moll. A Generalized polygamma function. Integral Transforms and Special Functions Vol. 15, No. 2, April 2004, pp. 101–115]</ref> It generalizes the [[polygamma function]] to negative and fractional order, but remains equal to it for integer positive orders. The function is balanced, that is satisfies the conditions <math>f(0)=f(1)</math> and <math>\int_0^1 f(x) dx = 0</math>.
 
It generalizes the [[polygamma function]] to negative and fractional order, but remains equal to it for integer positive orders.
It is defined as follows:
 
==Definition==
 
ItThe generalized polygamma function is defined as follows:
 
: <math>\psi(z,q)=\frac{\zeta'(z+1,q)+(\psi(-z)+\gamma ) \zeta (z+1,q)}{\Gamma (-z)} \, </math>
Line 7 ⟶ 11:
or alternatively,
 
: <math>\psi(z,q)=e^{- \gamma z}\frac{\partial}{\partial z}\left(e^{\gamma z}\frac{\zeta(z+1,q)}{\Gamma(-z)}\right),</math>
 
:where <math>\psi(z)</math> is the [[Polygamma function]] and <math>\zeta(z,q),</math> is the [[Hurwitz zeta function]].
 
The function is balanced, in that it satisfies the conditions <math>f(0)=f(1)</math> and <math>\int_0^1 f(x) dx = 0</math>.
 
==Relations==
 
Several special functions can be expressed in terms of generalized polygamma function.
Line 18 ⟶ 28:
 
* <math>\zeta(z,q)=\frac{\Gamma (1-z) \left(2^{-z} \left(\psi \left(z-1,\frac{q}{2}+\frac{1}{2}\right)+\psi \left(z-1,\frac{q}{2}\right)\right)-\psi(z-1,q)\right)}{\ln(2)}</math>
 
:where <math>\zeta(z,q),</math> is the [[Hurwitz zeta function]]
 
* <math>\zeta'(-1,x)=\psi(-2, x) + \frac{x^2}2 - \frac{x}2 + \frac1{12}</math>
Line 25 ⟶ 33:
* <math>B_n(q) = -\frac{\Gamma (n+1) \left(2^{n-1} \left(\psi\left(-n,\frac{q}{2}+\frac{1}{2}\right)+\psi\left(-n,\frac{q}{2}\right)\right)-\psi(-n,q)\right)}{\ln (2)}</math>
 
:where <math>B_n(q)</math> are [[Bernoulli polynomials]]
 
* <math>K(z)=A e^{\psi(-2,z)+\frac{z^2-z}{2}}</math>
 
:where ''K''(''z'') is [[K-function]] and A is [[Glaisher constant]].
 
==References==