Content deleted Content added
No edit summary |
formatting |
||
Line 3:
The first result in the field was the '''[[Schauder fixed-point theorem]]''', proved in 1930 by [[Juliusz Schauder]]. Quite a number of further results followed. One way in which fixed-point theorems of this kind have had a larger influence on mathematics as a whole has been that one approach is to try to carry over methods of [[algebraic topology]], first proved for finite [[simplicial complex]]es, to spaces of infinite dimension. For example, the research of [[Jean Leray]] who founded [[sheaf theory]] came out of efforts to extend Schauder's work.
Other results include the [[Markov–Kakutani fixed-point theorem]] (1936-1938) and the [[Ryll-Nardzewski fixed-point theorem]] (1967) for continuous affine self-mappings of compact convex sets, as well as the [[Earle–Hamilton fixed-point theorem]] (1968) for holomorphic self-mappings of open domains.
<blockquote>'''[[Kakutani fixed point theorem|Kakutani's fixed-point theorem]]:'''
==See also==
|