Content deleted Content added
m Bot: link syntax/spacing |
improve and tidy up |
||
Line 1:
The '''[[
== Formula and proof ==
Because
:<math>y = mx+b_1\,</math>
:<math>y = mx+b_2\,,</math>
the distance between the two lines can be found by solving the linear systems▼
the distance between the two lines is the distance between the two intercepts of these lines with the perpendicular line
:<math>y = -x/m \, ,</math>
:<math>\begin{cases}
y = mx+b_1 \\
y = -x/m \, ,
\end{cases}</math>
and
:<math>\begin{cases}
y = mx+b_2 \\
y = -x/m \, ,
\end{cases}</math>
to get the coordinates of the intercept points. The solutions to the linear systems are the points
:<math>\left( x_1,y_1 \right)\ = \left( \frac{-b_1m}{m^2+1},\frac{b_1}{m^2+1} \right)\,</math>▼
▲:<math>\left( x_1,y_1 \right)\ = \left( \frac{-b_1m}{m^2+1},\frac{b_1}{m^2+1} \right)\, ,</math>
and
:<math>\left( x_2,y_2 \right)\ = \left( \frac{-b_2m}{m^2+1},\frac{b_2}{m^2+1} \right)
The distance between the points is
:<math>d = \sqrt{\left(\frac{b_1m-b_2m}{m^2+1}\right)^2 + \left(\frac{b_2-b_1}{m^2+1}\right)^2}\,,</math>
which reduces to
:<math>d = \frac{|b_2-b_1|}{\sqrt{m^2+1}}\,.</math>
When the lines are given by
:<math>ax+by+c_1=0\,</math>
:<math>ax+by+c_2=0,\,</math>
:<math>d = \frac{|c_2-c_1|}{\sqrt {a^2+b^2}}.</math>
|