Completely multiplicative function: Difference between revisions

Content deleted Content added
Just proper wiki (Math/TeX) alignment..
Line 31:
===Proof of pseudo-associative property ===
 
:<math>
<math> f \cdot \left(g*h \right)(n) = f(n) \cdot \sum_{d|n} g(d) h \left( \frac{n}{d} \right) =</math>
\begin{align}
 
::<math>=f \sum_{d|cdot \left(g*h \right)(n}) &= f(n) \cdot (\sum_{d|n} g(d) h \left( \frac{n}{d} \right)) =</math> \\
<math> f&= \cdot \left(g*h \right)(sum_{d|n) =} f(n) \cdot \sum_{d|n} (g(d) h \left( \frac{n}{d} \right)) =</math> \\
 
::<math>&= \sum_{d|n} (f(d) f \left( \frac{n}{d} \right)) \cdot (g(d) h \left( \frac{n}{d} \right)) </math>\text{ (since ''} f'' \text{ is completely multiplicative) <math>} =</math> \\
::<math>&= \sum_{d|n} (f(d) g(d)) \cdot (f \left( \frac{n}{d} \right) h \left( \frac{n}{d} \right)) = (f \cdot g)*(f \cdot h).</math>
 
&= (f \cdot g)*(f \cdot h).
::<math>= \sum_{d|n} (f(d) g(d)) \cdot (f \left( \frac{n}{d} \right) h \left( \frac{n}{d} \right)) = (f \cdot g)*(f \cdot h).</math>
\end{align}
</math>
 
==See also==