Content deleted Content added
→Mappings: isogeny example |
|||
Line 26:
When X<sub>0</sup>(n) has genus one, it will itself be isomorphic to an elliptic curve, which will have the same [[j-invariant]]. For instance, X<sub>0</sup>(11) has j-invariant -122023936/161051 = - 2<sup>12</sup>11<sup>-5</sup>31<sup>3</sup>, and is isomorphic to the curve y<sup>2</sup>+y = x<sup>3</sup>-x<sup>2<sup>-10x-20. If we substitute this value of j for y in X<sub>0</sup>(5), we obtain two rational roots and a factor of degree four. The two rational roots correspond to isomorphism classes of curves with rational coefficients which are 5-isogenous to the above curve, but not isomorphic, having a different function field.
Specifically, we
:<math>x \mapsto \frac{x^5-2x^4+3x^3-2x+1}{x^2(x-1)^2}</math>
and
|