Content deleted Content added
Corrections in main text |
Updating mathematical part |
||
Line 55:
where <math>\mathbf{x}</math> is the <math>N \times 1</math> transmitted vector signal, <math>y_k</math> is the received signal, and <math>n_k</math> is the zero-mean unit-variance noise.
Under linear precoding, the transmitted vector signal is
:<math>\mathbf{x} = \sum_{i=1}^K \mathbf{w}_i s_i,</math> where <math>s_i</math> is the (normalized) data symbol and <math>\mathbf{w}_i</math> is the <math>N \times 1</math> linear precoding vector. The [[Signal-to-noise plus interference|signal-to- :<math>\textrm{SINR}_k = \frac{|\mathbf{h}_k^H\mathbf{w}_k|^2}{1+\sum_{i \neq k} |\mathbf{h}_k^H\mathbf{w}_i|^2}</math>
and the corresponding
A common performance
:<math>\underset{\{\mathbf{w}_k\}:\sum_i \|\mathbf{w}_i\|^2 \leq P}{\mathrm{maximize}} \sum_{k=1}^K a_k \log_2(1+\textrm{SINR}_k)</math>
for some positive weights <math>a_k</math> that represent the user priority. The weighted sum rate is maximized by weighted MMSE precoding that selects
:<math>\mathbf{w}^{\textrm{W-MMSE}}_k = \sqrt{p_k} \frac{( \mathbf{I} + \sum_{i \neq k} q_i \mathbf{h}_i \mathbf{h}_i^H )^{-1} \mathbf{h}_k}{\|( \mathbf{I} + \sum_{i \neq k} q_i \mathbf{h}_i \mathbf{h}_i^H )^{-1} \mathbf{h}_k\|} </math>
for some positive coefficients <math>q_1,\ldots,q_K</math> (related to the user weights) that satisfy <math>\sum_{i=1}^K q_i = P</math> and <math>p_i</math> is the optimal power allocation.<ref name=bjornson />
Line 72 ⟶ 74:
====Uplink-downlink duality====
For comparison purposes, it is instructive to compare the downlink results with the corresponding uplink MIMO channel where the same single-antenna users transmit to the same base station, having <math>N</math> receive antennas. The input-output relationship can be described as
:<math>\mathbf{y} = \sum_{k=1}^{K} \mathbf{h}_k \sqrt{q_k} s_k + \mathbf{n}</math>
where <math>s_k</math> is the transmitted symbol for user <math>k</math>, <math>q_k</math> is the transmit power for this symbol, <math>\mathbf{y}</math> and <math>\mathbf{n}</math> are the <math>N \times 1</math> vector of received signals and noise respectively, <math>\mathbf{h}_k</math> is the <math>N \times 1</math> vector of channel coefficients. If the base station uses linear receive filters to combine the received signals on the <math>N</math> antennas, the SINR for the data stream from user <math>k</math> becomes
:<math>\textrm{SINR}^{\mathrm{uplink}}_k = \frac{q_k|\mathbf{h}_k^H\mathbf{v}_k|^2}{1+\sum_{i \neq k} q_i |\mathbf{h}_i^H\mathbf{v}_k|^2}</math>
where <math>\mathbf{v}_k</math> is the unit-norm receive filter for this user.
:<math>\mathbf{v}^{\textrm{MMSE}}_k = \frac{( \mathbf{I} + \sum_{i \neq k} q_i \mathbf{h}_i \mathbf{h}_i^H )^{-1} \mathbf{h}_k}{\|( \mathbf{I} + \sum_{i \neq k} q_i \mathbf{h}_i \mathbf{h}_i^H )^{-1} \mathbf{h}_k\|} </math>
Observe that the coefficients <math>q_1,\ldots,q_K</math> that was used in the weighted MMSE
==== Limited feedback precoding ====
The precoding strategies described above was based on
The received signal in multi-user MIMO with limited feedback precoding is mathematically described as
Line 90 ⟶ 92:
:<math>y_k = \mathbf{h}_k^H \sum_{i=1}^K \mathbf{w}_i s_i + \mathbf{h}_k^H \sum_{i=1}^K \mathbf{e}_i s_i+ n_k, \quad k=1,2, \ldots, K</math>
where <math>\mathbf{h}_k^H \sum_{i
==See also==
|