Content deleted Content added
No edit summary |
infobox |
||
Line 1:
{{Infobox probability distribution
| type = continuous
| pdf_image =
| cdf_image =
| notation =
| parameters =
| mode = 0
| variance
| skewness =
| kurtosis =
| entropy =
| mgf
| cf =
| pgf =
| fisher =
}}
In [[probability theory]] and [[statistics]], the '''exponential-logarithmic (EL) distribution''' is a family of lifetime [[probability distribution|distributions]] with
decreasing [[failure rate]], defined on the interval [0, ∞). This distribution is [[Parametric family|parameterized]] by two parameters <math>p\in(0,1)</math> and <math>\beta >0</math>.
▲ <CAPTION>Exponential-Logarithmic distribution (EL)</CAPTION>
▲ <TD colSpan=2>[[File:Pdf EL.png|thumb|center|300px|Probability density function]]</TD></TR>
<TD colSpan=2>[[File:Hazard EL.png|thumb|center|300px|Hazard function]]</TD></TR>▼
▲ <TD><SPAN><math>p\in (0,1)</math></SPAN><BR><SPAN> <math>\beta >0</math></SPAN></TD></TR>
▲ <TD><math>x\in[0,\infty)</math></TD></TR>
▲ <TD><math>\frac{1}{-\ln p} \times \frac{\beta(1-p) e^{-\beta
▲x}}{1-(1-p) e^{-\beta x}}</math></TD></TR>
▲ <TD><math>1-\frac{\ln(1-(1-p) e^{-\beta x})}{\ln p}</math></TD></TR>
▲ <TD><math>-\frac{\text{polylog}(2,1-p)}{\beta\ln p}</math></TD></TR>
▲ <TD><math>\frac{\ln(1+\sqrt{p})}{\beta}</math></TD></TR>
▲ <TD><math>-\frac{2 \text{polylog}(3,1-p)}{\beta^2\ln p}</math><br> <math>-\frac{ \text{polylog}^2(2,1-p)}{\beta^2\ln^2 p}</math></TD></TR>
▲ <TD><math>-\frac{\beta(1-p)}{\ln p (\beta-t)} \text{hypergeom}_{2,1} </math><br> <math>([1,\frac{\beta-t}{\beta}],[\frac{2\beta-t}{\beta}],1-p)</math></TD></TR>
== Introduction ==
Line 97 ⟶ 74:
=== The survival, hazard and mean residual life functions ===
The [[survival function]] (also known as the reliability
function) and [[hazard function]] (also known as the failure rate
|