Content deleted Content added
No edit summary |
No edit summary |
||
Line 14:
in that the functions <math>f_1, . . . , f_n</math> are used individually so as to yield an easily implementable algorithm.
They are called proximal because each non smooth function among <math>f_1, . . . , f_n</math> is involved via its proximity
operator. Iterative Shrinkage thresholding algorithm, [http://en.wikipedia.org/wiki/Landweber_iteration projected Landweber], projected
gradient, [http://en.wikipedia.org/wiki/Alternating_projection alternating projections], [http://en.wikipedia.org/wiki/Alternating_direction_method_of_multipliers#Alternating_direction_method_of_multipliers alternating-direction method of multipliers], alternating
split Bregman are special instances of proximal algorithms. Details of proximal methods are discussed in <ref>
Line 107:
*[http://en.wikipedia.org/wiki/Alternating_projection Alternating Projection ]
*[http://en.wikipedia.org/wiki/Alternating_direction_method_of_multipliers#Alternating_direction_method_of_multipliers alternating-direction method of multipliers]
*Fast Iterative Shrinkage Thresholding Algorithm (FISTA)<ref>
{{cite article | last1="Beck | first1=A | last2=Teboulle | first2 = M | title="A fast iterative shrinkage-thresholding algorithm for linear inverse problems"
|journal=SIAM J. Imaging Science|volume=2 |year=2009|pages=183-202}}</ref>
== References ==
* {{cite book
|