Biomaterial surface modifications: Difference between revisions

Content deleted Content added
No edit summary
Citation bot (talk | contribs)
m [432]Add: title, year, last1, first1, last2, first2, last3, first3, last4, first4, last5, first5, last6, first6, journal, volume, issue, pages, pmid. Tweak: pages, title, year, last1, first1, last2, first2, last3, first3, last4, first4, journal, volume...
Line 48:
===== Plasma Treatment to Reduce Thrombogenisis =====
 
Ammonia plasma treatment can be used to attach amine functional groups. These functional groups lock on to anticoagulants like Heparin decreasing thrombogenicity.<ref>{{cite journal |doi=10.1002/jbm.820270614 |title=Immobilization of high-affinity heparin oligosaccharides to radiofrequency plasma-modified polyethylene |year=1993 |last1=Yuan |first1=Shengmei |last2=Szakalas-Gratzl |first2=Gyongyi |last3=Ziats |first3=Nicholas P. |last4=Jacobsen |first4=Donald W. |last5=Kottke-Marchant |first5=Kandice |last6=Marchant |first6=Roger E. |journal=Journal of Biomedical Materials Research |volume=27 |issue=6 |pages=811–9 |pmid=8408111}}</ref>
 
==== Covalent Immobilization by Gas Plasma RF Glow Discharge ====
Line 89:
==== Hydrophilic Coatings ====
 
Hydrophilic coatings can reduce friction in the arteries by up to 83% when compared to bare wires due to their high surface energy.<ref name=friction>{{cite journal |pmid=8485751 |year=1993 |last1=Schröder |first1=J |title=The mechanical properties of guidewires. Part III: Sliding friction |volume=16 |issue=2 |pages=93–7 |journal=Cardiovascular and interventional radiology |doi=10.1007/BF02602986}}</ref> When the hydrophilic coatings come into contact with bodily fluids they form a waxy surface texture that allows the wire to slide easily through the arteries. Guide wires with hydrophilic coatings have increased trackability and are not very thrombogenic; however the low coefficient of friction increases the risk of the wire slipping and perforating the artery. <ref name=techniques>{{cite journal |first1=Andrejs |last1=Erglis |first2=Inga |last2=Narbute |first3=Dace |last3=Sondore |first4=Alona |last4=Grave |first5=Sanda |last5=Jegere |title=Tools & Techniques: coronary guidewires |journal=EuroIntervention |url=http://www.pcronline.com/eurointervention/tools-and-techniques/coronary-guidewires/download_pdf.php |pmid=20542813 |year=2010 |volume=6 |issue=1 |pages=168–9 |doi=10.4244/ |doi_brokendate=June 16, 2013}}</ref>
 
==== Hydrophobic Coatings ====
Line 104:
| Teflon || 24 <ref name=teflonse>{{cite web |url=http://www.vtcoatings.com/plastics.htm|title= Coating Plastics - Some Important Concepts from a Formulators Perspective |last1= Van Iseghem |first1= Lawrence |website= Van Technologies Inc |accessdate=2 June 2013}}</ref>
|-
| Silicone || 22 <ref name=Siliconese>{{cite journal |doi=10.1021/la9906626 |title=Surface Modification of Silicone Elastomer Using Perfluorinated Ether |year=2000 |last1=Thanawala |first1=Shilpa K. |last2=Chaudhury |first2=Manoj K. |journal=Langmuir |volume=16 |issue=3 |pages=1256}}</ref>
|-
| PEEK || 42.1 <ref name=PEEKse>{{cite web |url=http://www.surface-tension.de/solid-surface-energy.htm|title= Solid surface energy data (SFE) for common polymers |date= November 20, 2007 |accessdate=2 June 2013}}</ref>