Content deleted Content added
rmv spd notice - does not fall under A10 - see talk page for further details |
Under construction |
||
Line 1:
{{underconstruction}}
In [[calculus]] and related areas of mathematics, a '''linear function''' from the real numbers to the real numbers is a function whose graph is a line in the plane.
* A linear function is a [[polynomial]] function of first degree with one independent variable <em>х</em>, i.e.
**In the function, <
**
▲ <math>y(x)=ax+b</math> (In the USA, the coefficient letter <em>a</em> is usually replaced by <em>m</em>.)
▲ <li>To use the function or graph the line, the coefficient letters <em>a</em> and <em>b</em> must be given as actual real numbers. For example: <math>y(x)=2x-1</math>. Here <em>a</em>=2 and <em>b</em>=-1.</li>
▲ <li>The [[Domain_of_a_function|___domain]] or set of allowed values for <em>x</em> of a linear function is <math>\Re</math> (all real numbers). This means that any real number can be substituted for <em>x</em>. (Of course, the value of <em>y</em> depends on the substituted value for x.)</li>
▲ <li>The set of all points: (<em>x</em>,<em>y</em>(<em>x</em>)) is the line.</li>
▲ <li>Since two points determine a line, it is enough to substitute two different values for <em>x</em> in the linear function and determine <em>y</em> for each of these values (see videos below).</li>
<strong>Graph of the linear function: <em>y</em>(<em>x</em>)=-<em>x</em>+2</strong>▼
<li>A linear function has exactly one intersection point with the <em>у</em>-axis. This point is (0,<em>b</em>).</li>▼
<li>A linear function has exactly one intersection point with the <em>х</em>-axis. This point is ({{Fraction|-b|a}},0). </li> ▼
<li>From this, it follows that a linear function has exactly one [[Zero_of_a_function|zero]] or root. That is, there is exactly one solution to the equation <em>a</em><em>x</em>+<em>b</em>=0. <br /> The zero is <em>x</em>={{Fraction|-b|a}}.</li>▼
<li>There are three standard forms for linear functions.▼
<li>[[#General Form|General form]]</li>▼
<li>[[#Slope-Intercept Form|Slope-intercept form]]</li>▼
<li>[[#Vector-Parametric Form|Vector-parametric form]]</li>▼
▲
<h1>General Form</h1>▼
<p><math> Ax+By=C </math> <big>where</big> <math> A \ne 0 </math> and <math> B \ne 0 </math>.</p>▼
▲* Because the graph of a
▲* A
▲*
<li>The general form has 2 variables <em>x</em> and <em>у</em> and 3 coefficient letters A, B, and C. </li>▼
<li>To use the function or graph the line, the coefficient letters <em>A</em>, <em>B</em> and <em>C</em> must be given as actual real numbers: 3<em>x</em>-2<em>y</em>=1. Here <em>A</em>=2, <em>B</em>=-2 and <em>C</em>=1. </li>▼
<li>This form is not unique. If one multiplies <em>A</em>, <em>B</em> and <em>C</em> by a factor <em>k</em>, the coefficients change, but the line remains the same.▼
▲
===Properties of the general form===
▲*
▲*
▲*
<ul>
<li>Example: For <em>k</em>=3, it follows that (e.g.) 3<em>x</em>-2<em>y</em>=1 and 9<em>x</em>-6<em>y</em>=3 are the same line. </li>
Line 151 ⟶ 130:
|