Linear function (calculus): Difference between revisions

Content deleted Content added
rmv spd notice - does not fall under A10 - see talk page for further details
Under construction
Line 1:
{{underconstruction}}
<p>Definition: In mainstream mathematics, a <strong>linear function</strong> is a [[Function_(mathematics)|function]] whose graph is a slanted line in the plane.</p>
<p>&nbsp;&nbsp;&nbsp;<small>In advanced mathematics, a [[linear mapping]] is sometimes referred to as a linear function, but this is not the mainstream definition. A linear function as defined here is not a linear mapping.</small></p>
<p>It should be noted that a horizontal line is usually not considered to be linear function, but is just called a <em>constant function</em> and a vertical line is not a function since it does not pass the [[Vertical_line_test|vertical line test]].</p>
 
In [[calculus]] and related areas of mathematics, a '''linear function''' from the real numbers to the real numbers is a function whose graph is a line in the plane.
 
<h1>== Properties of Linear Functions</h1> ==
 
* A linear function is a [[polynomial]] function of first degree with one independent variable <em>х</em>, i.e.
<table border="0" cellspacing="5" width="850px">
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;*: <math>y(x)=ax+b</math> &nbsp;&nbsp;(In the USA, the coefficient letter <em>a</em> is usually replaced by <em>m</em>.)
<tr><td rowspan="2">
<li>**To use the function or graph the line, the coefficient letters <em>a</em> and <em>b</em> must be given as actual real numbers. For example: <math>y(x)=2x-1</math>. Here <em>a</em>=2 and <em>b</em>=-1.</li>
<ul>
**In the function, <liem>x</em>A linear function is a [[polynomial]] function of first degree with onethe independent variable and <em>хy</em>, i.e.is the dependent variable.<br/li>
** <li>The [[Domain_of_a_function|___domain]] or set of allowed values for <em>x</em> of a linear function is &nbsp;<math>\Re</math>&nbsp; (all real numbers). This means that any real number can be substituted for <em>x</em>. (Of course, the value of <em>y</em> depends on the substituted value for x.)</li>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math>y(x)=ax+b</math> &nbsp;&nbsp;(In the USA, the coefficient letter <em>a</em> is usually replaced by <em>m</em>.)
<li>**The set of all points: (<em>x</em>,<em>y</em>(<em>x</em>)) is the line.</li>
<ul>
<li>**Since two points determine a line, it is enough to substitute two different values for <em>x</em> in the linear function and determine <em>y</em> for each of these values (see videos below).</li>
<li>To use the function or graph the line, the coefficient letters <em>a</em> and <em>b</em> must be given as actual real numbers. For example: <math>y(x)=2x-1</math>. Here <em>a</em>=2 and <em>b</em>=-1.</li>
<li>In the function, <em>x</em> is the independent variable and <em>y</em> is the dependent variable.</li>
<li>The [[Domain_of_a_function|___domain]] or set of allowed values for <em>x</em> of a linear function is &nbsp;<math>\Re</math>&nbsp; (all real numbers). This means that any real number can be substituted for <em>x</em>. (Of course, the value of <em>y</em> depends on the substituted value for x.)</li>
<li>The set of all points: (<em>x</em>,<em>y</em>(<em>x</em>)) is the line.</li>
<li>Since two points determine a line, it is enough to substitute two different values for <em>x</em> in the linear function and determine <em>y</em> for each of these values (see videos below).</li>
</ul>
</li>
</ul></td>
<td align="center" style="border: 1px solid #444444;">[[Image: wiki_linear_function.png|160px]]</td></tr>
<tr><td align="center">
<strong>Graph of the linear function: <em>y</em>(<em>x</em>)=-<em>x</em>+2</strong>
</td></tr><tr><td colspan="2">
<ul>
<li>Because the graph of a linear function is a slanted line:
<ul>
<li>A linear function has exactly one intersection point with the <em>у</em>-axis. This point is (0,<em>b</em>).</li>
<li>A linear function has exactly one intersection point with the <em>х</em>-axis. This point is ({{Fraction|-b|a}},0). </li>
<li>From this, it follows that a linear function has exactly one [[Zero_of_a_function|zero]] or root. That is, there is exactly one solution to the equation <em>a</em><em>x</em>+<em>b</em>=0. <br /> The zero is <em>x</em>={{Fraction|-b|a}}.</li>
</ul>
</li>
<li>There are three standard forms for linear functions.
<ul>
<li>[[#General Form|General form]]</li>
<li>[[#Slope-Intercept Form|Slope-intercept form]]</li>
<li>[[#Vector-Parametric Form|Vector-parametric form]]</li>
</ul>
</li>
<li>Quite often the term <em>[[linear equation]]</em> is used interchangably with <em>linear function</em>. While a linear function in general form is indeed a linear equation, the opposite is definitely not true.</li>
</ul>
</td></tr>
</table>
 
 
<strong>[[Image: wiki_linear_function.png|right|160px Graph of the linear function: <em>y</em>(<em>x</em>)=-<em>x</em>+2</strong>]]
 
<h1>General Form</h1>
<div style="margin-left:15px">
<p><math> Ax+By=C </math> &nbsp;&nbsp;&nbsp; <big>where</big> &nbsp;&nbsp; <math> A \ne 0 </math> &nbsp;and&nbsp; <math> B \ne 0 </math>.</p>
</div>
 
* Because the graph of a <li>Alinear function is a line, a linear function has exactly one intersection point with the <em>у</em>-axis. This point is (0,<em>b</em>).</li>
<p style=" font-size:1.2em; font-weight:bold">Properties of the general form</p>
* A <li>Anonconstant linear function has exactly one intersection point with the <em>х</em>-axis. This point is ({{Fraction|-b|a}},0). </li>
<ul>
* <li>From this, it follows that a nonconstant linear function has exactly one [[Zero_of_a_function|zero]] or root. That is, there is exactly one solution to the equation <em>a</em><em>x</em>+<em>b</em>=0. <br /> The zero is <em>x</em>={{Fraction|-b|a}}.</li>
<li>The general form has 2 variables <em>x</em> and <em>у</em> and 3 coefficient letters A, B, and C. </li>
 
<li>To use the function or graph the line, the coefficient letters <em>A</em>, <em>B</em> and <em>C</em> must be given as actual real numbers: 3<em>x</em>-2<em>y</em>=1. Here <em>A</em>=2, <em>B</em>=-2 and <em>C</em>=1. </li>
<li>*There are three standard forms for linear functions.
<li>This form is not unique. If one multiplies <em>A</em>, <em>B</em> and <em>C</em> by a factor <em>k</em>, the coefficients change, but the line remains the same.
<li>**[[#General Form|General form]]</li>
<li>**[[#Slope-Intercept Form|Slope-intercept form]]</li>
<li>**[[#Vector-Parametric Form|Vector-parametric form]]</li>
<h1>== General Form</h1> ==
 
<p><math> Ax+By=C </math> &nbsp;&nbsp;&nbsp; <big>where</big> &nbsp;&nbsp; <math> A \ne 0 </math> &nbsp;and&nbsp; <math> B \ne 0 </math>.</p>
 
 
===Properties of the general form===
* <li>The general form has 2 variables <em>x</em> and <em>у</em> and 3 coefficient letters A, B, and C. </li>
* <li>To use the function or graph the line, the coefficient letters <em>A</em>, <em>B</em> and <em>C</em> must be given as actual real numbers: 3<em>x</em>-2<em>y</em>=1. Here <em>A</em>=2, <em>B</em>=-2 and <em>C</em>=1. </li>
* <li>This form is not unique. If one multiplies <em>A</em>, <em>B</em> and <em>C</em> by a factor <em>k</em>, the coefficients change, but the line remains the same.
<ul>
<li>Example: For <em>k</em>=3, it follows that (e.g.) 3<em>x</em>-2<em>y</em>=1 and 9<em>x</em>-6<em>y</em>=3 are the same line. </li>
Line 151 ⟶ 130:
 
 
 
<h1>Video - How to sketch the graph of <em>A</em><em>x</em>+<em>B</em><em>y</em>=<em>C</em></h1>
<div style="margin-left:15px">
<table border="0" cellspacing="5" width="850px" >
<tr><td valign="top" >
<td>
<p>[[Image: wiki_linear_standard_xy_en.ogv ]]</p></td></tr></table>
</div>
 
 
<h1>Video - How to sketch the graph of <em>y</em>(<em>x</em>)=<em>a</em><em>x</em>+<em>b</em></h1>
<div style="margin-left:15px">
<table border="0" cellspacing="5" width="850px" >
<tr><td valign="top" >
<td>
<p>[[Image: wiki_linear_explicit_zoom_out.ogv ]]</p></td></tr></table>
</div>