Content deleted Content added
→Properties: there is a convex function equivalent to the modulus |
moved Day's reference to "Notes": this is not where the reader should look for learning more on the subject, unless he/she precisely looks for the history of the notion. Also moved Pisier |
||
Line 13:
:<math>\varepsilon_{0} = \sup \{ \varepsilon \,:\, \delta(\varepsilon) = 0 \}.</math>
These notions are implicit in the general study of uniform convexity by J. A. Clarkson ({{harvtxt|Clarkson|1936}}; this is the same paper containing the statements of [[Clarkson's inequalities]]). The term "modulus of convexity" appears to be due to M. M. Day
| last = Day▼
| first = Mahlon▼
| title = Uniform convexity in factor and conjugate spaces▼
| journal = Ann. Of Math. (2)▼
| volume = 45▼
| year = 1944▼
| pages = 375–385▼
| doi = 10.2307/1969275▼
| issue = 2▼
| publisher = Annals of Mathematics▼
| jstor = 1969275▼
}}</ref>
==Properties==
Line 19 ⟶ 31:
::<math>\delta(\varepsilon / 2) \le \delta_1(\varepsilon) \le \delta(\varepsilon), \quad \varepsilon \in [0, 2].</math>
* The normed space {{nowrap|(''X'', ǁ&
* The Banach space {{nowrap|(''X'', ǁ&
* When ''X'' is uniformly convex, it admits an equivalent norm with power type modulus of convexity.<ref>see {{
| last=Pisier |first=Gilles |authorlink=Gilles Pisier▼
| title= Martingales with values in uniformly convex spaces | journal=Israel J. Math. | volume=20 | year=1975 | issue=3–4 | pages=326–350 | doi = 10.1007/BF02760337 | url=http://www.springerlink.com/content/pwh1126545520581/ | mr=394135}}▼
.</ref> Namely, there exists {{nowrap|''q'' ≥ 2}} and a constant {{nowrap|''c'' > 0}} such that
::<math>\delta(\varepsilon) \ge c \, \varepsilon^q, \quad \varepsilon \in [0, 2].</math>
Line 44 ⟶ 59:
| publisher = American Mathematical Society
| jstor = 1989630
▲| last = Day
▲| first = Mahlon
▲| title = Uniform convexity in factor and conjugate spaces
▲| journal = Ann. Of Math. (2)
▲| volume = 45
▲| year = 1944
▲| pages = 375–385
▲| doi = 10.2307/1969275
▲| issue = 2
▲| publisher = Annals of Mathematics
▲| jstor = 1969275
}}
* Fuster, Enrique Llorens. Some moduli and constants related to metric fixed point theory. ''Handbook of metric fixed point theory'', 133-175, Kluwer Acad. Publ., Dordrecht, 2001. {{MR|1904276}}
Line 74 ⟶ 76:
}}.
* [[Vitali Milman|Vitali D. Milman]]. Geometric theory of Banach spaces II. Geometry of the unit sphere. ''Uspechi Mat. Nauk,'' vol. 26, no. 6, 73-149, 1971; ''Russian Math. Surveys'', v. 26 6, 80-159.
▲ | last=Pisier |first=Gilles |authorlink=Gilles Pisier
▲ | title= Martingales with values in uniformly convex spaces | journal=Israel J. Math. | volume=20 | year=1975 | issue=3–4 | pages=326–350 | doi = 10.1007/BF02760337 | url=http://www.springerlink.com/content/pwh1126545520581/ | mr=394135}}
[[Category:Banach spaces]]
|