Flow plasticity theory: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
m [443]Add: issue, bibcode, last, doi. Tweak: last, pages. Formatted dashes. | Bbanerje
Line 80:
 
=== Kinematics of multiplicative plasticity ===
The concept of multiplicative decomposition of the deformation gradient into elastic and plastic parts was first proposed independently by B. A. Bilby,<ref>{{Citation|last1=Bilby|first1=B. A.|last2=Bullough|first2=R.|last3=Smith|first3= E.|year=1955|title= Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry|journal= Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences|volume= 231|numberpages= 263–273.|issue=1185|pagesbibcode= 263-2731955RSPSA.231..263B|last=Smith|doi=10.1098/rspa.1955.0171}}</ref> E. Kroner,<ref>{{Citation|last=Kroner|first=E.|title=Kontinuumstheorie der versetzungen und eigenspannungen|journal=Erg. Angew. Math.|volume= 5 |year=1958|pages=1–179.}}</ref> in the context of [[crystal plasticity]] and extended to continuum plasticity by Erasmus Lee.<ref>{{Citation|last=Lee|first= E. H. |year=1969|title=Elastic-Plastic Deformation at Finite Strains|journal= Journal of Applied Mechanics|volume= 36|pages= 1|url=ftp://melmac.sd.ruhr-uni-bochum.de/kintzel/JoaM_27_04_2008/Lee_69.pdf|doi=10.1115/1.3564580}}</ref> The decomposition assumes that the total deformation gradient ('''''F''''') can be decomposed as:
:<math>
\boldsymbol{F} = \boldsymbol{F}^e\cdot\boldsymbol{F}^p
Line 123:
\boldsymbol{M} := \tfrac{1}{2}(\boldsymbol{C}^e\cdot\boldsymbol{S} + \boldsymbol{S}\cdot\boldsymbol{C}^e)
</math>
where '''''S''''' is the [[stress measures|second Piola-Kirchhoff stress]]. A possible hyperelastic model in terms of the logarithmic strain is <ref>{{Citation|last=Anand|first= L.|year=1979|title= On H. Hencky's approximate strain-energy function for moderate deformations|journal= ASME Journal of Applied Mechanics|volume= 46|pages= 78.|bibcode=1979JAM....46...78A|doi=10.1115/1.3424532}}</ref>
:<math>
\boldsymbol{M} = \frac{\partial W}{\partial \boldsymbol{E}^e} = J\,\frac{dU}{dJ} + 2\mu\,\text{dev}(\boldsymbol{E}^e)