Bentley–Ottmann algorithm: Difference between revisions

Content deleted Content added
No edit summary
Corrected the equality operator to show the true values for which this algorithm is an improvement over the brute force method.
Line 1:
In [[computational geometry]], the '''Bentley–Ottmann algorithm''' is a [[sweep line algorithm]] for listing all [[line segment intersection|crossings in a set of line segments]]. It extends the [[Shamos–Hoey algorithm]], a similar previous algorithm for testing whether or not a set of line segments has any crossings. For an input consisting of ''n'' line segments with ''k'' crossings, the Bentley–Ottmann algorithm takes time O((''n'' + ''k'') log ''n''). In cases where ''k'' =< o(''n''<sup>2</sup> / log ''n''), this is an improvement on a naïve algorithm that tests every pair of segments, which takes O(''n''<sup>2</sup>).
 
The algorithm was initially developed by {{harvs|first1=Jon|last1=Bentley|author1-link=Jon Bentley|first2=Thomas|last2=Ottmann|year=1979|txt}}; it is described in more detail in the textbooks {{harvtxt|Preparata|Shamos|1985}}, {{harvtxt|O'Rourke|1998}}, and {{harvtxt|de Berg|van Kreveld|Overmars|Schwarzkopf|2000}}. Although [[asymptotic analysis|asymptotically]] faster algorithms are now known, the Bentley–Ottman algorithm remains a practical choice due to its simplicity and low memory requirements.