Content deleted Content added
Add a reference to the Damien, 1999 paper. |
Clarified introduction. |
||
Line 18:
To visualize this motivation, imagine printing out a simple bell curve and throwing darts at it. Assume that the darts are uniformly distributed around the board. Now take off all of the darts that are outside the curve (i.e. perform [[rejection sampling]]). The x-positions of the remaining darts will be distributed according to the bell curve. This is because there is the most room for the darts to land where curve is highest and thus the probability density is greatest.
Slice sampling, in its simplest form, samples uniformly from underneath the curve f(x) without the need to reject any points, as follows:
#Choose a starting value x<sub>0</sub> for which f(x<sub>0</sub>)>0.
#Sample a y value uniformly between 0 and
#Draw a horizontal line across the curve at this y position.
#Sample
#Repeat from step 2 using the new x value.
The motivation here is that one way to sample a point uniformly from within an arbitrary curve is first to draw thin uniform-height horizontal slices across the whole curve. Then, we can sample a point within the curve by
Generally, the trickiest part of this algorithm is finding the bounds of the horizontal slice, which involves inverting the function describing the distribution being sampled from. This is especially problematic for multi-modal distributions, where the slice may consist of multiple discontiguous parts. It is often possible to use a form of rejection sampling to overcome this, where we sample from a larger slice that is known to include the desired slice in question, and then discard points outside of the desired slice.
|