Cantor's intersection theorem: Difference between revisions

Content deleted Content added
No edit summary
No edit summary
Line 9:
Notice the differences and the similarities between the two theorem. In Theorem 2, the <math>C_n</math> are only assumed to be closed (and not compact, which is stronger) since given a compact space <math>X</math> and <math>Y\subset X</math> a closed subset, <math>Y</math> is necessarily compact. Also, in Theorem 1 the intersection is exactly 1 point, while in Theorem 2 it could contain many more points. Interestingly, a metric space having the Cantor Intersection property (i.e. the theorem above holds) is necessarily complete (for justification see below). An example of an application of this theorem is the existence of limit points for self-similar contracting fractals.<ref>Ergodic Theory and Symbolic Dynamics in Hyperbolic Spaces, T. Bedford, M. Keane and C. Series eds., Oxford Univ. Press 1991, page 225</ref>
 
Notice that each of the hypotheses above is essential. If the metric space were not complete, then one could construct a nested sequence of non-empty, compact sets converging to a "hole" in the space, i.e. <math>\mathbb{Q}</math> with the usual metric and the sequence of sets, <math>C_n = [\sqrt{2}, \sqrt{2}+1/n]</math>. If the sets are not closed, then one can construct sequences of nested sets which have empty intersection, i.e. <math>\mathbb{R}</math> with the collection, <math>C_n = (0,\frac{1}{n}) </math>. The collections <math>C_n = [n, \infty)</math> and <math>C_n = [0-\frac{1}{n}, 1+\frac{1}{n}]</math> illustrate what may happen when the diameters do not tend to zero: the intersection may be empty, as in the first, or may contain more than a single point, as in the second.
 
== Proof ==