Content deleted Content added
m typo fix |
converted ((math)) to unicode as far as possible, to speed up page rendering; suggest tabular layout of conditions |
||
Line 1:
In [[logic]], a conditional quantifier is a kind of [[Lindström quantifier]] (or [[generalized quantifier]]) ''Q''<
{|
|-
| || || ''Q''<sub>''A''</sub> ''X'' ''X'' || [reflexivity]
|-
| align="right" | ''Q''<sub>''A''</sub> ''X'' ''Y'' || ⇒ || ''Q''<sub>''A''</sub> ''X'' (''Y''∧''X'') || [right conservativity]
|-
| align="right" | ''Q''<sub>''A''</sub> ''X'' (''Y''∧''X'') || ⇒ || ''Q''<sub>''A''</sub> ''X'' ''Y'' || [left conservativity]
|-
| align="right" | ''Q''<sub>''A''</sub> ''X'' ''Y'' || ⇒ || ''Q''<sub>''A''</sub> ''X'' (''Y''∨''Z'') || [positive confirmation]
|-
| align="right" | ''Q''<sub>''A''</sub> ''X'' (''Y''∧''Z'') || ⇒ || ''Q''<sub>''A''</sub> (''X''∧''Y'') ''Z''
|-
| align="right" | ''Q''<sub>''A''</sub> ''X'' ''Y'' || ⇒ || ''Q''<sub>''A''</sub> (''X''∨''Z'') (''Y''∨''Z'') || [positive and negative confirmation]
|-
|
|-
| align="right" | ''Q''<sub>''A''</sub> ''X'' ''Y'' || ⇒ || ''Q''<sub>''A''</sub> (¬''X'') (¬''Y'') || [contraposition]
|-
| align="right" | ''Q''<sub>''A''</sub> ''X'' ''Y'' ∧ ''Q''<sub>''A''</sub> ''Y'' ''Z'' || ⇒ || ''Q''<sub>''A''</sub> ''X'' ''Z'' || [transitivity]
|-
| align="right" | ''Q''<sub>''A''</sub> ''X'' ''Y'' || ⇒ || ''Q''<sub>''A''</sub> (''X''∧''Z'') ''Y'' || [weakening]
|-
| align="right" | ''Q''<sub>''A''</sub> ''X'' ''Y'' ∧ ''Q''<sub>''A''</sub> ''X'' ''Z'' || ⇒ || ''Q''<sub>''A''</sub> ''X'' (''Y''∧''Z'') || [conjunction]
|-
| align="right" | ''Q''<sub>''A''</sub> ''X'' ''Z'' ∧ ''Q''<sub>''A''</sub> ''Y'' ''Z'' || ⇒ || ''Q''<sub>''A''</sub> (''X''∨''Y'') ''Z'' || [disjunction]
|-
| align="right" | ''Q''<sub>''A''</sub> ''X'' ''Y'' || ⇒ || ''Q''<sub>''A''</sub> ''Y'' ''X'' || [symmetry].
|}
(The implication arrow denotes material implication in the metalanguage.) The ''minimal conditional logic'' '''M''' is characterized by the first six properties, and stronger conditional logics include some of the other ones. For example, the quantifier ∀<
A semantic interpretation of conditional quantifiers involves a relation between sets of subsets of a given structure—i.e. a relation between properties defined on the structure. Some of the details can be found in the article [[Lindström quantifier]].
|