Imaging particle analysis: Difference between revisions

Content deleted Content added
m Renamed section "Dynamic Imaging Particle Analysis" from "Dynamic Image Acquisition"
Line 45:
The major advantages to static particle imaging systems are the use of standard microscope systems and simplicity of [[depth of field]] considerations. Since these systems can be made from any standard optical microscope, they may be a lower cost approach for people who already have microscopes. More important, though, is that microscope-based systems have less depth of field issues generally versus dynamic imaging systems. This is because the sample is placed on a microscope slide, and then usually covered with a [[cover slip]], thus limiting the plane containing the particles relative to the [[optical axis]]. This means that more particles will be in acceptable focus at high magnifications.
 
===Dynamic ImageImaging AcquisitionParticle Analysis:===
 
[[File:Basic flow through diag on white.png|thumb|Diagram showing flow-through architecture for dynamic imaging particle anaysis.]]In Dynamic image acquisition, large amounts of sample are imaged by moving the sample past the microscope optics and using [[flash (photography)#High speed flash|high speed flash]] illumination to effectively "freeze" the motion of the sample. The flash is [[synchronization|synchronized]] with a high [[shutter speed]] in the camera to further prevent motion blur. In a dry particle system, the particles are dispensed from a shaker table and fall by gravity past the optical system. In fluid imaging particle analysis systems, the liquid is passed perpendicular past the optical axis by use of a narrow flow cell as shown at right.