Uniqueness theorem for Poisson's equation: Difference between revisions

Content deleted Content added
m Bot: Migrating 1 interwiki links, now provided by Wikidata on d:Q7886967
Line 43:
# [[Dirichlet boundary condition]]: <math>\varphi</math> is well defined at all of the boundary surfaces. As such <math>\varphi_1=\varphi_2</math> so at the boundary <math>\phi = 0</math> and correspondingly the surface integral vanishes.
# [[Neumann boundary condition]]: <math>\mathbf{\nabla}\varphi</math> is well defined at all of the boundary surfaces. As such <math>\mathbf{\nabla}\varphi_1=\mathbf{\nabla}\varphi_2</math> so at the boundary <math>\mathbf{\nabla}\phi=0</math> and correspondingly the surface integral vanishes.
# Modified [[Neumann boundary condition]] (also called [[Robin boundary condition]] - conditions where boundaries are specified as conductors with known charges): <math>\mathbf{\nabla}\varphi</math> is also well defined by applying locally [[Gauss's Law]]. As such, the surface integral also vanishes.
# Mixed boundary conditions (a combination of Dirichlet, Neumann, and modified Neumann boundary conditions): the uniqueness theorem will still hold.