Proximal gradient method: Difference between revisions

Content deleted Content added
Added links to other articles
Tag: gettingstarted edit
Line 76:
<math>
\begin{align}
& minimize_\text{minimize}_{y \in C} & f(y) + \frac{1}{2} \parallel x-y \parallel_2^2 &
\end{align}
</math>
admits a unique solution which is denoted by <math>prox_f\operatorname{prox}_f(x)</math>.
 
<math>
prox_f\operatorname{prox}_f(x) :\mathbb{R}^N \rightarrow \mathbb{R}^N
</math>
 
Line 89:
<math>
\begin{align}
& p=prox_f\operatorname{prox}_f(x) \Leftrightarrow x-p \in \partial f(p) & (\forall(x,p) \in \mathbb{R}^N \times \mathbb{R}^N)
\end{align}
</math>
Line 97:
<math>
\begin{align}
& p=prox_f\operatorname{prox}_f(x) \Leftrightarrow x-p \in \triangledown f(p) & (\forall(x,p) \in \mathbb{R}^N \times \mathbb{R}^N)
\end{align}
</math>