Content deleted Content added
m →Further reading: authorlink Michael D. Plummer |
|||
Line 39:
If a graph is 2-factorable, then it has to be 2''k''-regular for some integer ''k''. [[Julius Petersen]] showed in 1891 that this necessary condition is also sufficient: any 2''k''-regular graph is 2-factorable.<ref>{{harvtxt|Petersen|1891}}, §9, p. 200. {{harvtxt|Harary|1969}}, Theorem 9.9, p. 90. See {{harvtxt|Diestel|2005}}, Corollary 2.1.5, p. 39 for a proof.</ref>
If a connected graph is 2''k''-regular and has an even number of edges it may also be ''k''-factored, by choosing each of the two factors to be an alternating subset of the edges of an [[Euler tour]].<ref>{{harvtxt|Petersen|1891}}, §6, p. 198.</ref> This applies only to connected graphs; disconnected counterexamples include disjoint unions of odd cycles, or of copies of ''K''<sub>2''k''+1</sub>.
==Notes==
|