Site-specific recombinase technology: Difference between revisions

Content deleted Content added
m cat
Szquirrel (talk | contribs)
m Disambiguation link repair - You can help!
Line 19:
==Scientific implications==
 
Nearly every human gene has a counterpart in the mouse. Because of this [[homology (biology)|homology]] between the two species, the mouse is uniquely suited to the task of elucidating the ways in which our genetic material encodes information. SSR technology provides researchers with a powerful new way to manipulate the mouse genome in pursuit of the elucidation of human gene function. For the scientist, witnessing the effect of an altered or mutated gene on the function of an organism at the level of development and behavior helps greatly to illuminate the unique role this gene plays.
 
Due to the fact that many genes serve an essential function, eliminating or compromising gene activity throughout the entire animal often causes either embryonic death, which prevents the analysis of genetic function altogether, or causes other genes to compensate or take over the function of the compromised or eliminated gene. This in turn prevents researchers from identifying the unique role this gene plays in disease and development. Site-specific recombinase (SSR) technology gives scientists the ability to overcome these difficulties because it allows for the introduction of controlled genetic mutations in mice. These mutations can be isolated to a particular organ or biological area, or they can be activated at a certain stage in development. Because of this control, researchers are able to bypass a number of problems which seemed absolutely insurmountable only a few years ago, and which prevented much research into gene function from progressing. In short, a new and revolutionary biology is made possible through the application of this technology.