Robust geometric computation: Difference between revisions

Content deleted Content added
Freemancw (talk | contribs)
No edit summary
Freemancw (talk | contribs)
mNo edit summary
Line 8:
 
Geometric algorithms that operate on geometric objects are best thought of as
two types<ref><span style="color: rgb(34, 34, 34); font-family: Arial, sans-serif; line-height: 16.1200008392334px; background-color: rgb(255, 255, 255);">Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms.</span></ref> of operations: predicates and constructions. Predicates determine
relationships between objects. A predicate might determine if a point is to
the left, right, or is collinear with a line segment, determine if a point is
Line 17:
 
Geometric algorithms are typically designed and analyzed using the Real-RAM
model of computation<ref name=":0"><span style="color: rgb(34, 34, 34); font-family: Arial, sans-serif; line-height: 16.1200008392334px; background-color: rgb(255, 255, 255);">De Berg, M., Van Kreveld, M., Overmars, M., & Schwarzkopf, O. C. (2000). Computational geometry. </span>''Computational Geometry''<span style="color: rgb(34, 34, 34); font-family: Arial, sans-serif; line-height: 16.1200008392334px; background-color: rgb(255, 255, 255);">, 1-17.</span></ref>. In other words<ref name=":0" />, these
algorithms assume that the numerical data in geometric objects are exact
values in <math>\mathbb{R}</math> that can be stored and retrieved in constant time, and
Line 42:
== References ==
<!--- See http://en.wikipedia.org/wiki/Wikipedia:Footnotes on how to create references using <ref></ref> tags which will then appear here automatically -->
{{Reflist|refs =blah }}<references />
 
== External links ==<!--- Categories --->