Content deleted Content added
rv - was correct before - order in which limits are taken is important here |
No edit summary |
||
Line 1:
{{refimprove|date=September 2012}}
In [[mathematics]], a '''nowhere continuous function''', also called an '''everywhere discontinuous function''', is a [[function (mathematics)|function]] that is not [[continuous function|continuous]] at any point of its [[___domain of a function|___domain]]. If ''f'' is a function from [[real number]]s to real numbers, then ''f''(''x'') is nowhere continuous if for each point ''x'' there is an ε > 0 such that for each δ > 0 we can find a point ''y'' such that 0< |''x'' − ''y''| < δ and |''f''(''x'') − ''f''(''y'')| ≥ ε. Therefore, no matter how close we get to any fixed point, there are even closer points at which the function takes not-nearby values.
More general definitions of this kind of function can be obtained, by replacing the [[absolute value]] by the distance function in a [[metric space]], or by using the definition of continuity in a [[topological space]].
|