Marcinkiewicz interpolation theorem: Difference between revisions

Content deleted Content added
m Disambiguate Dense to Dense set using popups
m fix miss-matched <sub> and <sup>
Line 42:
:<math>\|Tf\|_{p,w} \le N_p\|f\|_p,</math>
:<math>\|Tf\|_{q,w} \le N_q\|f\|_q,</math>
so that the [[operator norm]] of ''T'' from ''L''<sup>''p''</sup> to ''L''<sup>''p'',''w''</sup> is at most ''N''<sub>''p''</supsub>, and the operator norm of ''T'' from ''L''<sup>''q''</sup> to ''L''<sup>''q'',''w''</sup> is at most ''N''<sub>''q''</supsub>. Then the following '''interpolation inequality''' holds for all ''r'' between ''p'' and ''q'' and all ''f''&nbsp;∈&nbsp;''L''<sup>''r''</sup>:
:<math>\|Tf\|_r\le \gamma N_p^\delta N_q^{1-\delta}\|f\|_r</math>
where
Line 60:
:<math>\|Tf\|_q\le C\|f\|_p.</math>
A more general formulation of the interpolation theorem is as follows:
* If ''T'' is a quasilinear operator of weak type (''p''<sub>0</sub>, ''q''<sub>0</sub>) and of weak type (''p''<sub>1</supsub>, ''q''<sub>1</sub>) where ''q''<sub>0</sub>&nbsp;≠&nbsp;''q''<sub>1</sub>, then for each θ&nbsp;∈&nbsp;(0,1), ''T'' is of type (''p'',''q''), for ''p'' and ''q'' with ''p'' ≤ ''q'' of the form
:<math>\frac{1}{p} = \frac{1-\theta}{p_0}+\frac{\theta}{p_1},\quad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}.</math>
The latter formulation follows from the former through an application of [[Hölder's inequality]] and a duality argument.