Content deleted Content added
m →History and applications: lk journal |
m →Formal definition: lk journal |
||
Line 4:
==Formal definition==
In [[size theory]], the '''size function''' <math>\ell_{(M,\varphi)}:\Delta^+=\{(x,y)\in \mathbb{R}^2:x<y\}\to \mathbb{N}</math> associated with the [[size pair]] <math>(M,\varphi:M\to \mathbb{R})</math> is defined in the following way. For every <math>(x,y)\in \Delta^+</math>, <math>\ell_{(M,\varphi)}(x,y)</math> is equal to the number of connected components of the set
<math>\{p\in M:\varphi(p)\le y\}</math> that contain at least one point at which the [[measuring function]] (a [[continuous function]] from a [[topological space]] <math>M\ </math> to <math>\mathbb{R}^k\ </math>.<ref name="FroLa99">Patrizio Frosini, Claudia Landi, ''Size theory as a topological tool for computer vision'', Pattern Recognition And Image Analysis, 9(4):596–603, 1999.</ref><ref name="FroMu99">Patrizio Frosini, Michele Mulazzani, ''Size homotopy groups for computation of natural size distances'', [[Bulletin of the Belgian Mathematical Society
.<ref name="dAFrLa06">Michele d'Amico, Patrizio Frosini, Claudia Landi, ''Using matching distance in Size Theory: a survey'', International Journal of Imaging Systems and Technology, 16(5):154–161, 2006.</ref> The concept of size function can be easily extended to the case of a measuring function <math>\varphi:M\to \mathbb{R}^k</math>, where <math>\mathbb{R}^k</math> is endowed with the usual partial order
.<ref name="BiCeFr08">Silvia Biasotti, Andrea Cerri, Patrizio Frosini, Claudia Landi, ''Multidimensional size functions for shape comparison'', Journal of Mathematical Imaging and Vision 32:161–179, 2008.</ref>
|