Revised simplex method: Difference between revisions

Content deleted Content added
Line 34:
\boldsymbol{x} =
\begin{bmatrix}
\boldsymbol{xx_B}_{ \\
\boldsymbol{Bx_N}} \\
\boldsymbol{x}_{\boldsymbol{N}}
\end{bmatrix} =
\begin{bmatrix}
Line 43:
</math>
 
where <math>\boldsymbol{x}_{\boldsymbol{B}x_B} \ge \boldsymbol{0}</math>. Partition <math>\boldsymbol{c}</math> and <math>\boldsymbol{s}</math> accordingly into
 
:<math>
Line 49:
\boldsymbol{c} & =
\begin{bmatrix}
\boldsymbol{cc_B}_{ \\
\boldsymbol{Bc_N}} \\
\boldsymbol{c}_{\boldsymbol{N}}
\end{bmatrix}\text{,} \\
\boldsymbol{s} & =
\begin{bmatrix}
\boldsymbol{ss_B}_{ \\
\boldsymbol{Bs_N}} \\
\boldsymbol{s}_{\boldsymbol{N}}
\end{bmatrix}\text{.}
\end{align}
</math>
 
To satisfy the complementary slackness condition, let <math>\boldsymbol{s}_{\boldsymbol{B}s_B} = \boldsymbol{0}</math>. It follows that
 
:<math>
\begin{align}
\boldsymbol{B}^{\mathrm{T}} \boldsymbol{\lambda} & = \boldsymbol{c}_{\boldsymbol{B}c_B}\text{,} \\
\boldsymbol{N}^{\mathrm{T}} \boldsymbol{\lambda} + \boldsymbol{s}_{\boldsymbol{N}s_N} & = \boldsymbol{c}_{\boldsymbol{N}c_N}\text{,}
\end{align}
</math>
Line 73:
:<math>
\begin{align}
\boldsymbol{\lambda} & = \boldsymbol{B}^{-\mathrm{T}} \boldsymbol{c}_{\boldsymbol{B}c_B}\text{,} \\
\boldsymbol{s}_{\boldsymbol{N}s_N} & = \boldsymbol{c}_{\boldsymbol{N}c_N} - \boldsymbol{N}^{\mathrm{T}} \boldsymbol{\lambda}\text{.}
\end{align}
</math>
 
If <math>\boldsymbol{s}_{\boldsymbol{N}s_N} \ge \boldsymbol{0}</math> at this point, the KKT conditions are satisfied, and thus <math>\boldsymbol{x}</math> is optimal.
 
=== Pivot operation ===