Utente:Spock/Sandbox: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica |
|||
Riga 9:
| <math>\textstyle{\frac {ln(2)} {ln(\delta)}?}</math> || align="right" | 0.4498? || Biforcazioni dell'eqauzione logistica || align="center" |[[Image:Logistic map bifurcation diagram.png|150px]] || Nel [[diagramma di biforcazione]], quando ci si avvicina alla zona caotica, a succession of period doubling appears, in a geometric progression tending to 1/δ. (δ=[[Feigenbaum constant]]=4.6692).
|-
| <math>\textstyle{\frac {ln(2)} {ln(3)}}</math> || align="right" | 0.6309 || [[Insieme di Cantor]] || align="center" |[[
|-
| <math>\textstyle{\frac {ln(6)} {ln(8)}}</math> || align="right" | 0.8617 || [[Insieme di Smith-Volterra-Cantor
|-
| <math>\textstyle{\frac {ln(8)} {ln(7)}}</math> || align="right" | 1.0686 || [[Isola di Gosper]] || align="center" |[[Image:Ile_de_Gosper.gif|100px]] ||
Riga 19:
| <math>\textstyle{\frac {ln(4)} {ln(3)}}</math> || align="right" | 1.2619 || [[Curva di Koch]] || align="center" | [[Image:Koch curve.png|200px]] || 3 di queste curve formano il fiocco o l'antifiocco di Koch.
|-
| <math>\textstyle{\frac {ln(4)} {ln(3)}}</math> || align="right" | 1.2619 || Bordo della [[Curva
|-
| <math>\textstyle{\frac {ln(4)} {ln(3)}}</math> || align="right" | 1.2619 ||
|-
| || align="right" | 1.3057 || [[Setaccio di Apollonio]] || align="center" |[[Image:Apollonian gasket.gif|100px]] ||
|-
| <math>\textstyle{\frac {ln(5)} {ln(3)}}</math>|| align="right" | 1.4649 || [[
|-
| <math>\textstyle{\frac {ln(5)} {ln(3)}}</math>|| align="right" | 1.4649 || [[Curva di Koch quadratica (
|-
|<math>\textstyle{\frac {ln(8)} {ln(4)}}</math>|| align="right" | 1.5000 || [[Curva di Koch qaudratica (
|-
| || align="right" | 1.5236 || [[Curva del Drago]] boundary || align="center" | [[Image:Boundary dragon curve.png|150px]]|| Cf Chang & Zhang<ref> [http://www.poignance.com/math/fractals/dragon/bound.html Fractal dimension of the boundary of the dragon fractal]</ref>.
Riga 53:
| <math>\textstyle{\frac {ln(8)} {ln(3)}}</math> || align="right" | 1.8928 || [[Polvere di Cantor]] in 3D || align="center" | [[Image:Cube_Cantor.png|100px]]|| Insieme di Cantor in 3 dimensioni.
|-
|Estimated || align="right" | 1.9340 || Bordo del [[Frattale
|-
| || align="right" | 1.974 || [[Tassellatura di Penrose]] || align="center" |[[image:pen0305c.gif|100px]] || Vedi Ramachandrarao, Sinha & Sanyal<ref>[http://www.ias.ac.in/currsci/aug102000/rc80.pdf Fractal dimension of a penrose tiling]</ref>
|-
| <math>\textstyle{2}</math> || align="right" | 2 || [[
|-
| <math>\textstyle{2}</math> || align="right" | 2 || [[
|-
| <math>\textstyle{2}</math> || align="right" | 2 || [[
|-
| <math>\textstyle{2}</math> || align="right" | 2 || [[
|-
| || align="right" | 2 || [[z-order (curve)|Lebesgue curve or z-order curve]] || align="center" | [[Image:z-order curve.png|100px]]|| Unlike the previous ones this space-filling curve is differentiable almost everywhere.
|-
| <math>\textstyle{\frac {ln(2)} {ln(\sqrt{2})}}</math> || align="right" | 2 || [[
|-
| || align="right" | 2 || [[
|-
| <math>\textstyle{\frac {ln(4)} {ln(2)}}</math> || align="right" | 2 || [[T-Square (fractal)|T-Square]] || align="center" | [[Image:T-Square fractal (evolution).png|200px]]||
|-
| <math>\textstyle{\frac {ln(4)} {ln(2)}}</math> || align="right" | 2 || [[
|-
| <math>\textstyle{\frac {ln(4)} {ln(2)}}</math> || align="right" | 2 || [[
|-
| <math>\textstyle{\frac {ln(4)} {ln(2)}}</math> || align="right" | 2 || [[H-fractal]] || align="center" |[[Image:H fractal.png|150px]]||
|-
| <math>\textstyle{\frac {ln(4)} {ln(2)}}</math> || align="right" | 2 || [[2D greek cross fractal]] || align="center" | ||
|-
| || align="right" | 2.06 || [[
|-
| <math>\textstyle{\frac {ln(20)} {ln(2+\phi)}}</math> || align="right" | 2.3296 || [[
|-
| <math>\textstyle{\frac {ln(13)} {ln(3)}}</math> || align="right" | 2.3347 || [[
|-
| || align="right" | 2.4739 || [[Apollonian sphere packing]] || align="center" |[[Image:Apollonian spheres.jpg|100px]] || The interstice left by the apollolian spheres. Apollonian gasket in 3D. Dimension calculated by M. Borkovec, W. De Paris, and R. Peikert <ref>[http://graphics.ethz.ch/~peikert/papers/apollonian.pdf Fractal dimension of the apollonian sphere packing]</ref>.
|-
| <math>\textstyle{\frac {ln(32)} {ln(4)}}</math> || align="right" | 2.50 || [[
|-
| <math>\textstyle{\frac {ln(16)} {ln(3)}}</math> || align="right" | 2.5237 || [[
|-
| <math>\textstyle{\frac {ln(12)} {ln(1+\phi)}}</math> || align="right" | 2.5819 || [[
|-
| <math>\textstyle{\frac {ln(6)} {ln(2)}}</math> || align="right" | 2.5849 || [[3D greek cross fractal]] || align="center" |[[Image:Greek cross 3D.png|200px]]||
|-
| <math>\textstyle{\frac {ln(6)} {ln(2)}}</math> || align="right" | 2.5849 || [[
|-
| <math>\textstyle{\frac {ln(20)} {ln(3)}}</math> || align="right" | 2.7268 || [[
|-
| <math>\textstyle{\frac {ln(8)} {ln(2)}}</math> || align="right" | 3 || [[
|}
|