Logarithmically concave function: Difference between revisions

Content deleted Content added
Addbot (talk | contribs)
m Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q12351850
clean up using AWB
Line 18:
 
==Properties==
* A positive log-concave function is also [[Quasi-concave_functionconcave function| quasi-concave]].
 
* Every concave function that is nonnegative on its ___domain is log-concave. However, the reverse does not necessarily hold. An example is the [[Gaussian function]] {{math|''f''(''x'')}}&nbsp;=&nbsp;{{math|exp(&minus;x<sup>2</sup>/2)}} which is log-concave since {{math|log ''f''(''x'')}}&nbsp;=&nbsp;{{math|&minus;''x''<sup>2</sup>/2}} is a concave function of {{math|''x''}}. But {{math|''f''}} is not concave since the second derivative is positive for |{{math|''x''}}|&nbsp;>&nbsp;1:
Line 24:
::<math>f''(x)=e^{-\frac{x^2}{2}} (x^2-1) \nleq 0</math>
 
* A twice differentiable, nonnegative function with a convex ___domain is log-concave if and only if for all {{math|''x''}} satisfying {{math|''f''(''x'')&nbsp;>&nbsp;0}},
 
::<math>f(x)\nabla^2f(x) \preceq \nabla f(x)\nabla f(x)^T</math>, <ref> Stephen Boyd and Lieven Vandenberghe, [http://www.stanford.edu/~boyd/cvxbook/ Convex Optimization] (PDF) p.105</ref>
 
:i.e.
 
::<math>f(x)\nabla^2f(x) - \nabla f(x)\nabla f(x)^T</math> is
 
:[[positive-definite matrix|negative semi-definite]]. For functions of one variable, this condition simplifies to
Line 40:
* Products: The product of log-concave functions is also log-concave. Indeed, if {{math|''f''}} and {{math|''g''}} are log-concave functions, then {{math|log&nbsp;''f''}} and {{math|log&nbsp;''g''}} are concave by definition. Therefore
 
::<math>\log\,f(x) + \log\,g(x) = \log(f(x)g(x))</math>
 
:is concave, and hence also {{math|''f''&nbsp;''g''}} is log-concave.
Line 105:
|last1=Dharmadhikari|first1=Sudhakar
|last2=Joag-Dev
|first2=Kumar|series=Probability and Mathematical Statistics
|series=Probability and Mathematical Statistics
|publisher=Academic Press, Inc.
|___location=Boston, MA
|year=1988
|pages=xiv+278
|isbn=0-12-214690-5|mr=954608}}
 
* {{cite book|title=Parametric Statistical Theory | last1=Pfanzagl | first1=Johann
|authorlink= <!-- Johann Pfanzagl -->
|last2=with the assistance of R. Hamböker
|year=1994|publisher=Walter de Gruyter
|publisher=Walter de Gruyter
|isbn=3-11-013863-8
|mr=1291393}}
 
* {{cite book|title=Convex functions, partial orderings, and statistical applications|last1=Pečarić|first1=Josip E.|last2=Proschan|first2=Frank|last3=Tong|first3=Y. L.|<!-- authorlink2=Frank Proschan -->
|series=Mathematics in Science and Engineering|volume=187
|volume=187
|publisher=Academic Press, Inc.
|___location=Boston, MA