Content deleted Content added
Removed obsolete cleanup tag (article now has a lead) |
m fixed CS1 errors: dates to meet MOS:DATEFORMAT (also General fixes) using AWB (10069) |
||
Line 1:
One application of [[multilevel modeling]] (MLM) is the analysis of repeated measures data. '''Multilevel modeling for repeated measures''' data is most often discussed in the context of modeling change over time (i.e. growth curve modeling for longitudinal designs); however, it may also be used for repeated measures data in which time is not a factor.<ref>{{cite journal|last=Hoffman|first=Lesa|coauthors=Rovine, Michael J.|title=Multilevel models for the experimental psychologist: Foundations and illustrative examples|journal=Behavior Research Methods|year=2007|volume=39|issue=1|pages=101–117|doi=10.3758/BF03192848}}</ref>
In multilevel modeling, an overall change function (e.g. linear, quadratic, cubic etc.) is fitted to the whole sample and, just as in multilevel modeling for clustered data, the [[slope]] and [[Y-intercept|intercept]] may be allowed to vary. For example, in a study looking at income growth with age, individuals might be assumed to show linear improvement over time. However, the exact intercept and slope could be allowed to vary across individuals (i.e. defined as random coefficients).
Multilevel modeling with repeated measures employs the same statistical techniques as MLM with clustered data. In multilevel modeling for repeated measures data, the measurement occasions are nested within cases (e.g. individual or subject). Thus, [[Multilevel model#Level 1 regression equation|level-1]] units consist of the repeated measures for each subject, and the [[Multilevel model#Level 1 regression equation|level-2]] unit is the individual or subject. In addition to estimating overall parameter estimates, MLM allows regression equations at the level of the individual. Thus, as a growth curve modeling technique, it allows the estimation of inter-individual differences in intra-individual change over time by modeling the variances and covariances.<ref>{{cite journal|last=Curran|first=Patrick J.|coauthors=Obeidat, Khawla, Losardo, Diane|title=Twelve Frequently Asked Questions About Growth Curve Modeling|journal=Journal of Cognition and Development
==Assumptions==
Line 13:
==Statistics & Interpretation==
Mathematically, multilevel analysis with repeated measures is very similar to the analysis of data in which subjects are clustered in groups. However, one point to note is that time-related predictors must be explicitly entered into the model to evaluate trend analyses and to obtain an overall test of the repeated measure. Furthermore, interpretation of these analyses is dependent on the scale of the time variable (i.e. how it is coded).
*'''Fixed Effects:''' Fixed regression coefficients may be obtained for an overall equation that represents how, averaging across subjects, the subjects change over time.
Line 163:
==References==
*{{cite book|first1=Jacob|last1=Cohen|first2=Patricia|last2=Cohen|first3=Stephen G.|last3= West|first4=Leona S.|last4= Aiken |year=2002|title=Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences|publisher=Routledge Academic|isbn=9780805822236|edition=3. ed.}}
*{{cite journal|last=Curran|first=Patrick J.|coauthors=Obeidat, Khawla, Losardo, Diane|title=Twelve Frequently Asked Questions About Growth Curve Modeling|journal=Journal of Cognition and Development|year=2010|volume=11|issue=2|pages=121–136|doi=10.1080/15248371003699969}}
Line 169:
*{{cite book|last1=Fidell|first1=Barbara G.|last2= Tabachnick|first2= Linda S.|title=Using Multivariate Statistics|year=2007|publisher=Pearson/A & B|___location=Boston ; Montreal|isbn=0205459382|edition=5th ed.}}
*{{cite journal|last=Hoffman|first=Lesa|coauthors=Rovine, Michael J.|title=Multilevel models for the experimental psychologist: Foundations and illustrative examples|journal=Behavior Research Methods|year=2007|volume=39|issue=1|pages=101–117|doi=10.3758/BF03192848}}
*{{cite book|last=Howell|first=David C.|title=Statistical methods for psychology|year=2010|publisher=Thomson Wadsworth|___location=Belmont, CA|isbn=978-0-495-59784-1|edition=7th ed.}}
*{{cite book|last=Hox|first=Joop|title=Multilevel and SEM Approached to Growth Curve Modeling|year=2005|publisher=Wiley|___location=Chichester|isbn=978-0-470-86080-9|url=http://joophox.net/publist/ebs05.pdf|edition=[Repr.].}}
|