Content deleted Content added
Reverted 2 edits by 49.145.34.31 (talk): Unexplained changes. (TW) |
split technical details from general overview |
||
Line 1:
In [[error detection]], the '''Damm algorithm''' is a [[check digit]] [[algorithm]] that detects all [[Transcription error|single-digit errors]] and all [[Transcription error#Transposition error|adjacent transposition errors]]. It was presented by H. Michael Damm in 2004.
== Design == Its essential part is a [[quasigroup]] of [[Order (group theory)|order]] 10 (i.e. having a 10×10 [[Latin square]] as [[Cayley table|operation table]]) with the special feature of being totally anti-symmetric.<ref name=dhmd /><ref name=damm2007 /><ref group=lower-roman name=BIS2003 /><ref group=lower-roman name=Chen2009 /> Damm revealed several methods to create such totally anti-symmetric quasigroups of order 10 and gave some examples in his doctoral dissertation.<ref name=dhmd /><ref group=lower-roman name=BIS2003 /> With this, Damm also disproved an old conjecture that totally anti-symmetric quasigroups of order 10 do not exist.<ref name=damm2003 /> == Algorithm ==
|