Partial sorting: Difference between revisions

Content deleted Content added
Tournament Algorithm: {{unreferenced section}}
Heap-based solutions: remove unreferenced, hard to understand and possibly incorrect algorithm
Line 11:
 
A [[streaming algorithm|streaming]], single-pass partial sort is also possible using heaps or other [[priority queue]] data structures. First, insert the first {{mvar|k}} elements of the input into the structure. Then make one pass over the remaining elements, add each to the structure in turn, and remove the largest element. Each insertion operation also takes {{math|''O''(log ''k'')}} time, resulting in {{math|''O''(''n'' log ''k'')}} time overall; this algorithm is practical for small values of {{mvar|k}} and in [[online algorithm|online]] settings.<ref name="aofa04slides"/>
 
It is possible to transform the list into a [[binary heap]] in Θ(''n'') time, and then traverse the heap using a modified [[breadth-first search]] algorithm that places the elements in a [[priority queue]]{{clarify|reason=a heap is a priority queue!|date=January 2014}} (instead of the ordinary queue that is normally used in a BFS), starting with the root node, iteratively adding the children of the next node in the queue, and terminating the scan after traversing exactly ''k'' elements. As the queue size remains O(''k'') throughout the traversal, it would require O(''k'' log ''k'') time to complete, leading to a time bound of O(''n'' + ''k'' log ''k'') on this algorithm.{{citation needed|date=January 2014}}
 
== Specialised sorting algorithms ==