Content deleted Content added
→Simple covariance mapping: syntax typo |
|||
Line 5:
[[Image:Schematics of LCLS covariance mapping experiment.png|thumb|400px|'''Figure 1: Schematics of a covariance mapping experiment.''' The experiment was performed at the [[LCLS#LCLS|LCLS FEL]] at [[Stanford University]].<ref name="LJF13"/>]]
Covariance mapping is particularly well suited to [[free-electron laser]] (FEL) research, where the x-ray intensity is so high that the large number of photoelectron and photoions produced at each pulse overwhelms simpler [[Photoelectron photoion coincidence spectroscopy|coincidence techniques]]. Figure 1 shows a typical experiment.<ref name="LJF13">L J Frasinski, V Zhaunerchyk, M Mucke, R J Squibb, M Siano, J H D Eland, P Linusson, P v.d. Meulen, P Salén, R D Thomas, M Larsson, L Foucar, J Ullrich, K Motomura, S Mondal, K Ueda, T Osipov, L Fang, B F Murphy, N Berrah, C Bostedt, J D Bozek, S Schorb, M Messerschmidt, J M Glownia, J P Cryan, R Coffee, O Takahashi, S Wada, M N Piancastelli, R Richter, K C Prince, and R Feifel "Dynamics of Hollow Atom Formation in Intense X-ray Pulses Probed by Partial Covariance Mapping" ''Phys. Rev. Lett.'' '''111''' 073002 (2013), [http://hdl.handle.net/10044/1/11746 open access]</ref> X-ray pulses are focused on neon atoms and [[ionization|ionise]] them. The kinetic energy spectra of the photoelectrons ejected from neon are recorded at each laser shot using a suitable spectrometer (here a [[Time-of-flight mass spectrometry|time-of-flight spectrometer]]). The single-shot spectra are sent to a computer, which calculates and displays the covariance map.
===The need for correlations===
|