Average order of an arithmetic function: Difference between revisions

Content deleted Content added
Unexplained redirect
BG19bot (talk | contribs)
m WP:CHECKWIKI error fix for #02. Fix br tag, Do general fixes if a problem exists. - using AWB (10361)
Line 7:
as ''x'' tends to infinity.
 
It is conventional to choose an approximating function ''g'' that is [[Continuous function|continuous]] and [[Monotonic function|monotone]]. But even thus an average order is of course not unique.
 
==Calculating mean values using Dirichlet series==
In case ''F'' is of the form
 
<math>F(n)=\sum_{d \mathop |n} f(n),</math></br /> for some arithmetic function ''f(n)'', one has,
 
<math>\sum_{n \le x} F(n)=\sum_{d \le x} f(d) \sum_{n\le x, d|x} 1=\sum_{f \le d} f(d)[x/d] = x\sum_{d \le x} \frac{f(d)}{d} \text{ } + O(\sum_{d \le x} |f(d)|).\qquad\qquad (1)</math>
Line 17 ⟶ 18:
This identity often provides a practical way to calculate the mean value in terms of the [[Riemann zeta function]]. This is illustrated in the following example.
 
===The density of the k-th power free integers in {{math|'''N'''}}===
For an integer ''k''≥1 the set ''Q<sub>k</sub>'' of '''''k''-th-power-free''' integers is
 
<math>Q_{k}:=\{n \in \mathbb{Z}|\;n \text{ is not divisible by } d^k \text{ for any integer } d\ge 2\}</math>.
 
We calculate the [[natural density]] of these numbers in {{math|'''N'''}}, that is, the average value of [[indicator function|'''1<sub>Q<sub>k</sub></sub>''']], denoted by ''δ(n)'', in terms of the [[zeta function]].
 
The function ''δ'' is multiplicative, and since it is bounded by 1, its [[Dirichlet series]] converges absolutely in the half-plane Re(s)>1, and there has [[Euler product]]
Line 67 ⟶ 68:
 
which follows from the Möbius inversion formula.
 
 
In particular, the density of the [[square-free integers]] is <math>\zeta(2)^{-1}=\frac{6}{\pi^{2}}</math>.
Line 85:
* The [[prime number theorem]] is equivalent to the statement that the [[von Mangoldt function]] Λ(''n'') has average order 1;
* An average order of μ(''n''), the [[Möbius function]], is zero; this is again equivalent to the [[prime number theorem]].
 
===Visibility of lattice points===
We say that two lattice points are visible from one another if there is no lattice point on the open line segment joining them.
Line 94 ⟶ 95:
Notice that <math>\frac{\varphi(n)}{n}</math> is the probability of a random point on the square <math>\{(r,s)\in \mathbb{N} : \max(|r|,|s|)=n\}</math> to be visible from the origin.
Thus, one can show that the natural density of the points which are visible from the origin is given by the average,
 
<math>\lim_{N\rightarrow \infty}\frac{1}{N}\sum_{n\le N}\frac{\varphi(n)}{n}=\frac{6}{\pi^{2}}=\frac{1}{\zeta(2)}</math>.
Line 101 ⟶ 102:
 
===Divisor functions===
Consider the generalization of <math>d(n)</math>:
 
<math>\sigma_{\alpha}(n)=\sum_{d|n}d^{\alpha}</math>.
Line 125 ⟶ 126:
we have the asymptotic relation
:<math>\sum_{n\le x}(d(n)-(\log n+2\gamma))=o(x)\quad(x\rightarrow\infty),</math>
which suggests that the function <math>\log n+2\gamma</math> is a better choice of average order for <math>d(n)</math> than simply <math>\log n</math>.
 
==Mean values over {{math|'''F'''<sub>'''q'''</sub>'''[x]'''}}==
 
===Definition===
Let ''h(x)'' be a function on the set of [[monic polynomial]]s over [[finite field|'''F<sub>q</sub>''']]. For <math>n\ge 1</math> we define
Line 137 ⟶ 139:
<math>\lim_{n\rightarrow\infty}\text{Ave}_{n}(h)</math> provided this limit exists.
 
===Zeta function and Dirichlet series in {{math|'''F'''<sub>'''q'''</sub>[X]}}===
Let {{math|'''F<sub>q</sub>[X]'''}}=''A'' be the [[ring of polynomials]] over the [[finite field]] {{math|'''F<sub>q</sub>'''}}.
 
Line 144 ⟶ 146:
<math>D_{h}(s)=\sum_{f\text{ monic}}h(f)|f|^{-s}</math>,
 
where for <math>g\in A</math>, set <math>|g|=q^{deg(g)}</math> if <math>g\ne 0</math>, and <math>|g|=0</math> otherwise.
 
The polynomial zeta function is then
Line 173 ⟶ 175:
 
where the sum extends over all monic [[divisor]]s ''d'' of&nbsp;''m'', or equivalently over all pairs (''a'', ''b'') of monic polynomials whose product is ''m''.
The identity <math>D_{h}D_{g}=D_{h*g}</math> still holds. Thus, like in the elementary theory, the polynomial Dirichlet series and the zeta function has a connection with the notion of mean values in the context of polynomials. The following examples illustrate it.
 
====The density of the k-th power free polynomials in {{math|'''F'''<sub>'''q'''</sub>[X]}}====
Define <math>\delta(f)</math> to be 1 if <math>f</math> is k-th power free and 0 otherwise.
 
We calculate the average value of δ, which is the density of the k-th power free polynomials in {{math|'''F'''<sub>'''q'''</sub>[X]}}.
 
By multiplicativity of <math>\delta</math>:
Line 206 ⟶ 208:
 
===Examples===
 
====Polynomial Divisor functions====
At {{math|'''F<sub>q</sub>[X]'''}}, we define
Line 213 ⟶ 216:
We will compute <math>\text{Ave}_{n}(\sigma_{k})</math> for <math>k\ge 1</math>.
 
First, notice that:</br />
<math>\sigma_{k}(m)=h*\mathbb{I}(m)</math>
 
where <math>h(f)=|f|^{k}</math> and <math>\;\mathbb{I}(f)=1\;\; \forall{f}</math>.
Line 231 ⟶ 234:
 
<math> \text{Ave}_{n}\sigma_{k}=\frac{1-q^{k(n+1)}}{1-q^{k}}</math>.
 
 
 
 
'''Number of divisors'''
Line 286:
Hence,
 
<math>\sum_{deg(m)=n}\Lambda_{A}(m)=q^{n}log(q)</math>,</br /> and by dividing by <math>q^n</math> we get that,
 
<math>Ave_{n}\Lambda_{A}(m)=log(q)</math>.
 
====Polynomial Euler totient function====
Define [[Euler totient function]] polynomial analogue, <math>\Phi</math>, to be the number of elements in the group <math>(A/fA)^{*}</math>. We have,
 
Line 301:
 
==References==
* {{Hardy and Wright|citation=cite book}} Pp.&nbsp;347–360
* {{cite book | title=Introduction to Analytic and Probabilistic Number Theory | author=Gérald Tenenbaum | series=Cambridge studies in advanced mathematics | volume=46 | publisher=[[Cambridge University Press]] | year=1995 | isbn=0-521-41261-7 | zbl=0831.11001 | pages=36–55 }}
* {{Citation