Average order of an arithmetic function: Difference between revisions

Content deleted Content added
Line 229:
Substitute <math>q^{-s}=u</math> we get,
 
<math>\text{LHS}=\sum_{n}(\sum_{\text{deg}(m)=n} \sigma_k(m))u^{n}</math>, and by [[Cauchy product]] we get,
 
<math>\text{RHS}=\sum_{n}(q^{n}(\frac{1-q^{k(n+1)}}{1-q^{k}}))u^{n}</math>.