Content deleted Content added
m →References: Added 4 dois to journal cites using AWB (10209) |
Niceguyedc (talk | contribs) m WPCleaner v1.33 - Repaired 1 link to disambiguation page - (You can help) - Subfield |
||
Line 16:
If ''F'' is an imperfect field of prime characteristic ''p'', choose <math>a\in F</math> such that ''a'' is not a ''p''th power in ''F'', and let ''f''(''X'') = ''X''<sup>p</sup> − ''a''. Then ''f'' has no root in ''F'', and so if ''E'' is a splitting field for ''f'' over ''F'', it is possible to choose <math>\alpha</math> with <math>f(\alpha)=0</math>. In particular, <math>\alpha^{p}=a</math> and by the property stated in the paragraph directly above, it follows that <math>F[\alpha]\supseteq F</math> is a non-trivial purely inseparable extension (in fact, <math>E=F[\alpha]</math>, and so <math>E\supseteq F</math> is automatically a purely inseparable extension).<ref name="Isaacs299">Isaacs, p. 299</ref>
Purely inseparable extensions do occur naturally; for example, they occur in [[algebraic geometry]] over fields of prime characteristic. If ''K'' is a field of characteristic ''p'', and if ''V'' is an [[algebraic variety]] over ''K'' of dimension greater than zero, the [[function field of an algebraic variety|function field]] ''K''(''V'') is a purely inseparable extension over the [[Field extension|subfield]] ''K''(''V'')<sup>''p''</sup> of ''p''th powers (this follows from condition 2 above). Such extensions occur in the context of multiplication by ''p'' on an [[elliptic curve]] over a finite field of characteristic ''p''.
===Properties===
|