Content deleted Content added
m →Intuitive meaning: Fixing links to disambiguation pages, replaced: quotient space → quotient space using AWB |
m replace mr template with mr parameter in CS1 templates; using AWB |
||
Line 6:
In a constrained Hamiltonian system, a dynamical quantity is called a '''first class constraint''' if its Poisson bracket with all the other constraints vanishes on the '''constraint surface''' (the surface implicitly defined by the simultaneous vanishing of all the constraints). A '''second class constraint''' is one that is not first class.
First and second class constraints were introduced by {{harvs|txt|last=Dirac|authorlink=Paul Dirac|year1=1950|loc=p.136|year2=1964|loc2=p.17}} as a way of quantizing mechanical systems such as gauge theories where the symplectic form is degenerate.<ref>{{Citation | last1=Dirac | first1=P. A. M. | author1-link=Paul Dirac | title=Generalized Hamiltonian dynamics | doi=10.4153/CJM-1950-012-1 |
<ref>{{Citation | last1=Dirac | first1=Paul A. M. | title=Lectures on quantum mechanics | url=http://books.google.com/books?id=GVwzb1rZW9kC | publisher=Belfer Graduate School of Science, New York | series=Belfer Graduate School of Science Monographs Series |
The terminology of first and second class constraints is confusingly similar to that of [[primary constraint|primary and secondary constraints]]. These divisions are independent: both first and second class constraints can be either primary or secondary, so this gives altogether four different classes of constraints.
|