Transformation between distributions in time–frequency analysis: Difference between revisions

Content deleted Content added
No edit summary
JohnCD (talk | contribs)
Undid revision 633212413 by 130.102.158.15 (talk) RV unexplained deletion
Line 4:
There are several methods and transforms called "time-frequency distributions" (TFDs), whose interconnections were organized by Leon Cohen.<ref>[[Leon Cohen|L. Cohen]], "Generalized phase-space distribution functions," ''Jour. Math. Phys.'', vol.7, pp.&nbsp;781–786, 1966.</ref>
<ref>L. Cohen, "Quantization Problem and Variational Principle in the Phase Space Formulation of Quantum Mechanics," ''Jour. Math. Phys.'', vol.7, pp.&nbsp;1863–1866, 1976.</ref><ref>A. J. E. M. Janssen, "On the locus and spread of pseudo-density functions in the time frequency plane," ''Philips Journal of Research'', vol. 37, pp.&nbsp;79–110, 1982.</ref>
The most useful and popular methods form a class referred to as "quadratic" or [[bilinear time–frequency distribution]]s. A core member of this class is the [[Wigner–Ville distribution]] (WVD), as all other TFDs can be written as a smoothed or convolved versions of the WVD. Another popular member of this class is the [[spectrogram]] which is the square of the magnitude of the [[short-time Fourier transform]] (STFT). The spectrogram has the advantage of being positive and is easy to interpret, but also has disadvantages, like being irreversible, which means that once the spectrogram of a signal is computed, the original signal can't be extracted from the spectrogram. The theory and methodology for defining a TFD that verifies certain desirable properties is given in the "Theory of Quadratic TFDs".<ref>B. Boashash, “Theory of Quadratic TFDs”, Chapter 3, pp. 59–82, in B. Boashash, editor, Time-Frequency Signal Analysis & Processing: A Comprehensive Reference, Elsevier, Oxford, 2003; ISBN 0-08-044335-4.</ref>
 
The scope of this article is to illustrate some elements of the procedure to transform one distribution into another. The method used to transform a distribution is borrowed from the [[phase space formulation]] of [[quantum mechanics]], even though the subject matter of this article is "signal processing". Noting that a signal can recovered from a particular distribution under certain conditions, given a certain TFD ''ρ''<sub>1</sub>(''t,f'') representing the signal in a joint time–frequency ___domain, another, different, TFD ''ρ''<sub>2</sub>(''t,f'') of the same signal can be obtained to calculate any other distribution, by simple smoothing or filtering; some of these relationships are shown below. A full treatment of the question can be given in Cohen's book.