Content deleted Content added
m Bot: Migrating 3 interwiki links, now provided by Wikidata on d:q3029670 |
m →Determinants: Task 6k: add |script-title=; replace {{xx icon}} with |language= in CS1 citations; clean up language icons; |
||
Line 43:
==Determinants==
There is no natural way to define a [[determinant]] for (square) quaternionic matrices so that the values of the determinant are quaternions.<ref>{{cite journal |author=Helmer Aslaksen |title=Quaternionic determinants |year=1996 |journal=[[The Mathematical Intelligencer]] |volume=18 |number=3 |pages=57–65 |doi=10.1007/BF03024312}}</ref> Complex valued determinants can be defined however.<ref>{{cite journal |author=E. Study |title=Zur Theorie der linearen Gleichungen |year=1920 |journal=[[Acta Mathematica]] |volume=42 |number=1 |pages=1–61 |language=
: <math>\begin{bmatrix}~~a+bi & c+di \\ -c+di & a-bi \end{bmatrix}.</math>
This defines a map Ψ<sub>''mn''</sub> from the ''m'' by ''n'' quaternionic matrices to the 2''m'' by 2''n'' complex matrices by replacing each entry in the quaternionic matrix by its 2 by 2 complex representation. The complex valued determinant of a square quaternionic matrix ''A'' is then defined as det(Ψ(''A'')). Many of the usual laws for determinants hold; in particular, an [[square matrix|''n'' by ''n'' matrix]] is invertible if and only if its determinant is nonzero.
|