Arithmetic functions which are completely additive are:
* The restriction of the [[logarithm|logarithmic function]] to '''N''', ''a''<sub>0</sub>(''n'') - the sum of primes dividing ''n'', sometimes called sopfr(''n''). We have ''a''<sub>0</sub>(20) = ''a''<sub>0</sub>(2<sup>2</sup> ·· 5) = 2 + 2+ 5 = 9. Some values: ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001414 SIDN A001414]).
::''a''<sub>0</sub>(4) = 4
::''a''<sub>0</sub>(27) = 9
::''a''<sub>0</sub>(144) = ''a''<sub>0</sub>(2<sup>4</sup> ·· 3<sup>2</sup>) = ''a''<sub>0</sub>(2<sup>4</sup>) + ''a''<sub>0</sub>(3<sup>2</sup>) = 8 + 6 = 14
::''a''<sub>0</sub>(2,000) = ''a''<sub>0</sub>(2<sup>4</sup> ·· 5<sup>3</sup>) = ''a''<sub>0</sub>(2<sup>4</sup>) + ''a''<sub>0</sub>(5<sup>3</sup>) = 8 + 15 = 23
::''a''<sub>0</sub>(2,003) = 2003
::''a''<sub>0</sub>(54,032,858,972,279) = 1240658
::''a''<sub>1</sub>(4) = 2
::''a''<sub>1</sub>(27) = 3
::''a''<sub>1</sub>(144) = ''a''<sub>1</sub>(2<sup>4</sup> ·· 3<sup>2</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(3<sup>2</sup>) = 2 + 3 = 5
::''a''<sub>1</sub>(2,000) = ''a''<sub>1</sub>(2<sup>4</sup> ·· 5<sup>3</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(5<sup>3</sup>) = 2 + 5 = 7
::''a''<sub>1</sub>(2,001) = 55
::''a''<sub>1</sub>(2,002) = 33
:: ...
* The function ΩΩ(''n''), defined as the total number of [[prime number|prime]] factors of ''n'', counting multiple factors multiple times. It is often called "[[Big Omega function]]".This implies ΩΩ(1) = 0 since 1 has no prime factors. Some more values: ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001222 SIDN A001222])
::ΩΩ(4) = 2
::ΩΩ(27) = 3
::ΩΩ(144) = ΩΩ(2<sup>4</sup> ·· 3<sup>2</sup>) = ΩΩ(2<sup>4</sup>) + ΩΩ(3<sup>2</sup>) = 4 + 2 = 6
::ΩΩ(2,000) = ΩΩ(2<sup>4</sup> ·· 5<sup>3</sup>) = ΩΩ(2<sup>4</sup>) + ΩΩ(5<sup>3</sup>) = 4 + 3 = 7
::ΩΩ(2,001) = 3
::ΩΩ(2,002) = 4
::ΩΩ(2,003) = 1
::ΩΩ(54,032,858,972,279) = 3
::ΩΩ(54,032,858,972,302) = 6
::ΩΩ(20,802,650,704,327,415) = 7
:: ...
* An example of an arithmetic function which is additive but not completely additive is ωω(''n''), defined as the total number of ''different'' [[prime number|prime]] factors of ''n''. Some values (compare with ΩΩ(''n'')) ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001221 SIDN A001221])
:
::ωω(4) = 1
::ωω(27) = 1
::ωω(144) = ωω(2<sup>4</sup> ·· 3<sup>2</sup>) = ωω(2<sup>4</sup>) + ωω(3<sup>2</sup>) = 1 + 1 = 2
::ωω(2,000) = ωω(2<sup>4</sup> ·· 5<sup>3</sup>) = ωω(2<sup>4</sup>) + ωω(5<sup>3</sup>) = 1 + 1 = 2
::ωω(2,001) = 3
::ωω(2,002) = 4
::ωω(2,003) = 1
::ωω(54,032,858,972,279) = 3
::ωω(54,032,858,972,302) = 5
::ωω(20,802,650,704,327,415) = 5
:: ...
== References ==
# Janko BračičBračič, ''Kolobar aritmetičniharitmetičnih funkcij'' (''[[Ring (algebra)|Ring]] of arithmetical functions''), (Obzornik mat, fiz. '''49''' (2002) 4, pp 97 - 108) <font color=darkblue> (MSC (2000) 11A25) </font>
== See also ==
[[it:Funzione additiva]]
[[sv:Additiv funktion]]
[[zh:加性函數]]
[[zh:加性函數]]
|