Additive function: Difference between revisions

Content deleted Content added
WinBot (talk | contribs)
m BOT - Unicodifying
Line 20:
 
Arithmetic functions which are completely additive are:
* The restriction of the [[logarithm|logarithmic function]] to '''N''', ''a''<sub>0</sub>(''n'') - the sum of primes dividing ''n'', sometimes called sopfr(''n''). We have ''a''<sub>0</sub>(20) = ''a''<sub>0</sub>(2<sup>2</sup> &middot;· 5) = 2 + 2+ 5 = 9. Some values: ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001414 SIDN A001414]).
 
::''a''<sub>0</sub>(4) = 4
::''a''<sub>0</sub>(27) = 9
::''a''<sub>0</sub>(144) = ''a''<sub>0</sub>(2<sup>4</sup> &middot;· 3<sup>2</sup>) = ''a''<sub>0</sub>(2<sup>4</sup>) + ''a''<sub>0</sub>(3<sup>2</sup>) = 8 + 6 = 14
::''a''<sub>0</sub>(2,000) = ''a''<sub>0</sub>(2<sup>4</sup> &middot;· 5<sup>3</sup>) = ''a''<sub>0</sub>(2<sup>4</sup>) + ''a''<sub>0</sub>(5<sup>3</sup>) = 8 + 15 = 23
::''a''<sub>0</sub>(2,003) = 2003
::''a''<sub>0</sub>(54,032,858,972,279) = 1240658
Line 36:
::''a''<sub>1</sub>(4) = 2
::''a''<sub>1</sub>(27) = 3
::''a''<sub>1</sub>(144) = ''a''<sub>1</sub>(2<sup>4</sup> &middot;· 3<sup>2</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(3<sup>2</sup>) = 2 + 3 = 5
::''a''<sub>1</sub>(2,000) = ''a''<sub>1</sub>(2<sup>4</sup> &middot;· 5<sup>3</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(5<sup>3</sup>) = 2 + 5 = 7
::''a''<sub>1</sub>(2,001) = 55
::''a''<sub>1</sub>(2,002) = 33
Line 46:
:: ...
 
* The function &Omega;Ω(''n''), defined as the total number of [[prime number|prime]] factors of ''n'', counting multiple factors multiple times. It is often called "[[Big Omega function]]".This implies &Omega;Ω(1) = 0 since 1 has no prime factors. Some more values: ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001222 SIDN A001222])
 
::&Omega;Ω(4) = 2
::&Omega;Ω(27) = 3
::&Omega;Ω(144) = &Omega;Ω(2<sup>4</sup> &middot;· 3<sup>2</sup>) = &Omega;Ω(2<sup>4</sup>) + &Omega;Ω(3<sup>2</sup>) = 4 + 2 = 6
::&Omega;Ω(2,000) = &Omega;Ω(2<sup>4</sup> &middot;· 5<sup>3</sup>) = &Omega;Ω(2<sup>4</sup>) + &Omega;Ω(5<sup>3</sup>) = 4 + 3 = 7
::&Omega;Ω(2,001) = 3
::&Omega;Ω(2,002) = 4
::&Omega;Ω(2,003) = 1
::&Omega;Ω(54,032,858,972,279) = 3
::&Omega;Ω(54,032,858,972,302) = 6
::&Omega;Ω(20,802,650,704,327,415) = 7
:: ...
 
* An example of an arithmetic function which is additive but not completely additive is &omega;ω(''n''), defined as the total number of ''different'' [[prime number|prime]] factors of ''n''. Some values (compare with &Omega;Ω(''n'')) ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001221 SIDN A001221])
:
 
::&omega;ω(4) = 1
::&omega;ω(27) = 1
::&omega;ω(144) = &omega;ω(2<sup>4</sup> &middot;· 3<sup>2</sup>) = &omega;ω(2<sup>4</sup>) + &omega;ω(3<sup>2</sup>) = 1 + 1 = 2
::&omega;ω(2,000) = &omega;ω(2<sup>4</sup> &middot;· 5<sup>3</sup>) = &omega;ω(2<sup>4</sup>) + &omega;ω(5<sup>3</sup>) = 1 + 1 = 2
::&omega;ω(2,001) = 3
::&omega;ω(2,002) = 4
::&omega;ω(2,003) = 1
::&omega;ω(54,032,858,972,279) = 3
::&omega;ω(54,032,858,972,302) = 5
::&omega;ω(20,802,650,704,327,415) = 5
:: ...
 
Line 83:
== References ==
 
# Janko Bra&#269;i&#269;Bračič, ''Kolobar aritmeti&#269;niharitmetičnih funkcij'' (''[[Ring (algebra)|Ring]] of arithmetical functions''), (Obzornik mat, fiz. '''49''' (2002) 4, pp 97 - 108) <font color=darkblue> (MSC (2000) 11A25) </font>
 
== See also ==
Line 93:
[[it:Funzione additiva]]
[[sv:Additiv funktion]]
[[zh:加性函數]]
[[zh:&#21152;&#24615;&#20989;&#25976;]]