Tanc function: Difference between revisions

Content deleted Content added
New math article
 
No edit summary
Line 2:
In mathematics, the '''Tanc function''' is defined as<ref>Weisstein, Eric W. "Tanc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/TancFunction.html </ref>
 
: <math>\operatorname{Tanc}(z)=\frac {\tanhtan(z) }{z}</math>
[[File:Tanc 2D plot.png|thumb|Tanc 2D plot]]
[[File:Tanc'(z) 2D plot.png|thumb|Tanc'(z) 2D plot]]
[[File:Tanc integral 2D plot.png|thumb|Tanc integral 2D plot]]
 
;Imaginary part in complex plane
*<math> \operatorname{Im} \left( \frac {\tanhtan(x+iy) }{x+iy} \right) </math>
;Real part in complex plane
*<math> \operatorname{Re} \left( \frac {\tanhtan \left( x+iy \right) }{x+iy} \right) </math>
;absolute magnitude
*<math> \left| \frac {\tanhtan(x+iy) }{x+iy} \right| </math>
;First-order derivative
*<math> \frac {1- \tanhtan(z))^2}{z} - \frac {\tanhtan(z)}{z^2} </math>
;Real part of derivative
*<math> -\operatorname{Re} \left( -\frac {1- (\tanhtan(x+iy))^2}{x+iy} +\frac{\tanhtan(x+iy)}{(x+iy)^2} \right)
</math>
;Imaginary part of derivative
*<math>-\operatorname{Im} \left( -\frac {1-(\tanhtan(x+iy))^2}{x+iy} + \frac {\tanhtan(x+iy)}{(x+iy)^2} \right)
</math>
;absolute value of derivative
*<math> \left| -\frac{1-(\tanhtan(x+iy))^2}{x+iy}+\frac {\tanhtan(x+iy)}{(x+iy)^2} \right| </math>
 
==In terms of other special functions==
Line 35 ⟶ 38:
==Gallery==
{|
|[[File:Tanc abs complex 3D plot.png|thumb|Tanc abs complex 3D]]
|[[File:Tanc Im complex 3D plot.png|thumb|Tanc Im complex 3D plot]]
|[[File:Tanc Re complex 3D plot.png|thumb|Tanc Re complex 3D plot]]
|}
{|
|[[File:Tanc'(z) Im complex 3D plot.png|thumb|Tanc'(z) Im complex 3D plot]]
|[[File:Tanc'(z) Re complex 3D plot.png|thumb|Tanc'(z) Re complex 3D plot]]
|[[File:Tanc'(z) abs complex 3D plot.png|thumb|Tanc'(z) abs complex 3D plot]]
|
|}
 
{|
|[[File:Tanc abs plot.JPG|thumb|Tanc abs plot]]
|[[File:Tanc Im plot.JPG|thumb|Tanc Im plot]]
|[[File:Tanc Re plot.JPG|thumb|Tanc Re plot]]
|}
{|
|[[File:Tanc'(z) Im plot.JPG|thumb|Tanc'(z) Im plot]]
|[[File:Tanc'(z) abs plot.JPG|thumb|Tanc'(z) abs plot]]
|[[File:Tanc'(z) Re plot.JPG|thumb|Tanc'(z) Re plot]]
|}