Modular invariant theory: Difference between revisions

Content deleted Content added
No edit summary
Line 5:
When ''G'' is the finite general linear group GL<sub>''n''</sub>('''F'''<sub>''q''</sub>) over the finite field '''F'''<sub>''q''</sub> of order a prime power ''q'' acting on the ring '''F'''<sub>''q''</sub>[''X''<sub>1</sub>, ...,''X''<sub>''n''</sub>] in the natural way, {{harvtxt|Dickson|1911}} found a complete set of invariants as follows. Write [''e''<sub>1</sub>, ...,''e''<sub>''n''</sub>] for the determinant of the matrix whose entries are ''X''{{su|b=''i''|p=''q''<sup>''e''<sub>''j''</sub></sup>}}, where ''e''<sub>1</sub>, ...,''e''<sub>''n''</sub> are non-negative integers. For example, the [[Moore determinant over a finite field|Moore determinant]] [0,1,2] of order 3 is
 
:<math>\begin{vmatrix} x_1 & x_2x_1^q & x_3\\x_1^{q^2}\\x_2 & x_2^q & x_3^q\\x_1x_2^{q^2}\\x_3 & x_2x_3^{q^2} & x_3^{q^2} \end{vmatrix}</math>
 
Then under the action of an element ''g'' of GL<sub>''n''</sub>('''F'''<sub>''q''</sub>) these determinants are all multiplied by det(''g''), so they are all invariants of SL<sub>''n''</sub>('''F'''<sub>''p''</sub>) and the ratios [''e''<sub>1</sub>, ...,''e''<sub>''n''</sub>]/[0,&nbsp;1,&nbsp;...,''n''&nbsp;&minus;&nbsp;1] are invariants of GL<sub>''n''</sub>('''F'''<sub>''q''</sub>), called '''Dickson invariants'''. Dickson proved that the full ring of invariants '''F'''<sub>''q''</sub>[''X''<sub>1</sub>, ...,''X''<sub>''n''</sub>]<sup>GL<sub>''n''</sub>('''F'''<sub>''q''</sub>)</sup> is a polynomial algebra over the ''n'' Dickson invariants [0,&nbsp;1,&nbsp;...,''i''&nbsp;&minus;&nbsp;1,&nbsp;''i''&nbsp;+&nbsp;1,&nbsp;...,&nbsp;''n'']/[0,1,...,''n''&minus;1] for ''i''&nbsp;=&nbsp;0, 1, ..., ''n''&nbsp;&minus;&nbsp;1.